Criteo AI Lab @NeurIPS 2023
Main conference
-
Jean-Yves Franceschi (Criteo), Mike Gartrell (Criteo), Ludovic Dos Santos (Criteo), Thibaut Issenhuth (Criteo & Ecole des Ponts), Emmanuel de Bézenac (ETH Zürich), Mickaël Chen (Valeo.ai), Alain Rakotomamonjy (Criteo). Unifying GANs and Score-Based Diffusion as Generative Particle Models. Preprint and code.
-
Skander Karkar (Criteo & Sorbonne University), Ibrahim Ayed (Sorbonne University), Emmanuel de Bezenac (ETH Zurich), patrick Gallinari (Criteo & Sorbonne University), Module-wise Training of Neural Networks via the Minimizing Movement Scheme. Preprint.
-
Louis Serrano (Sorbonne University), Lise Le Boudec (Sorbonne University), Armand Kassaï Koupaï (Sorbonne University), Yuan Yin (Sorbonne University), Thomas X Wang (Sorbonne University), Jean-Noël Vittaut (Sorbonne University), Patrick Gallinari (Criteo & Sorbonne University), Operator Learning with Neural Fields: Tackling PDEs on General Geometries. Preprint.
-
Ziyad Benomar (ENSAE & FAIRPLAY) and Vianney Perchet (ENSAE, FAIRPLAY, Criteo). Advise querying under budget constraint for online algorithms. Preprint.
-
Dorian Baudry (ENSAE & FAIRPLAY), Fabien Pesquerel (INRIA, Univ. Lille, Centrale Lille), Rémy Degenne (INRIA, Univ. Lille, Centrale Lille), Odalric-Ambrym Maillard (INRIA, Univ. Lille, Centrale Lille). Fast Asymptotically Optimal Algorithms for Non-Parametric Stochastic Bandits. Preprint.
- , , , and Vianney Perchet (ENSAE, FAIRPLAY, Criteo). Trading-off price for data quality to achieve fair online allocation.
Workshop paper
-
Imad Aouali (ENSAE & Criteo). Linear diffusion models meet contextual bandits with large action spaces. NeurIPS 2023 Foundation Models for Decision Making Workshop. Preprint.
Note: FAIRPLAY is a joint INRIA x Criteo project team. See here.