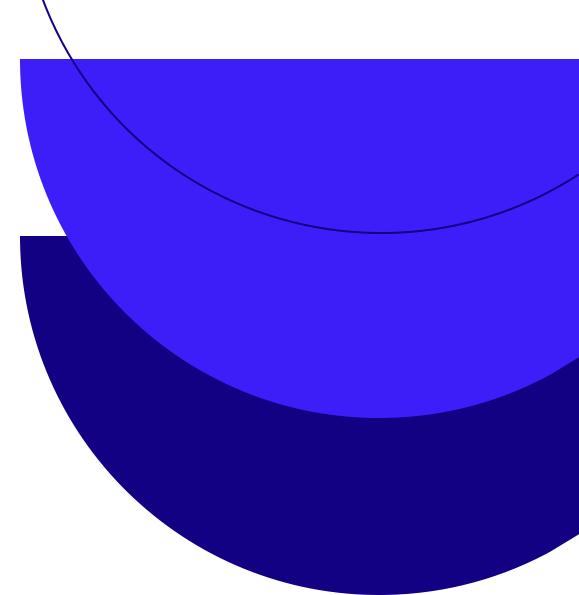


Advertising on the open internet under privacy constraints

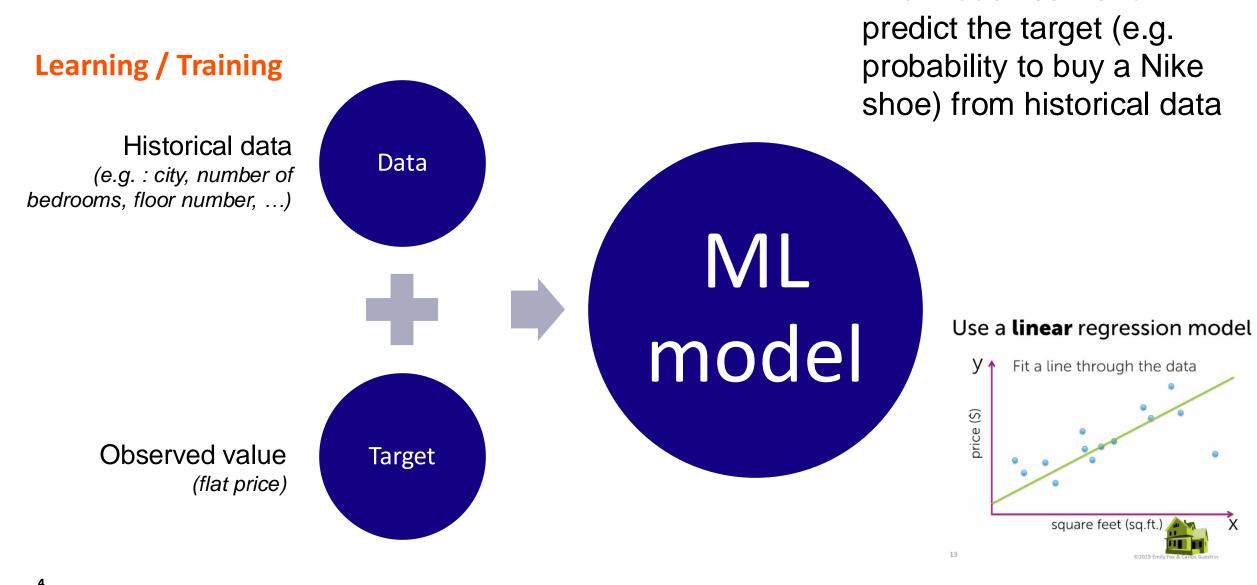
Maxime Vono

Staff Researcher Lead Privacy-preserving ML



Outline

Outline

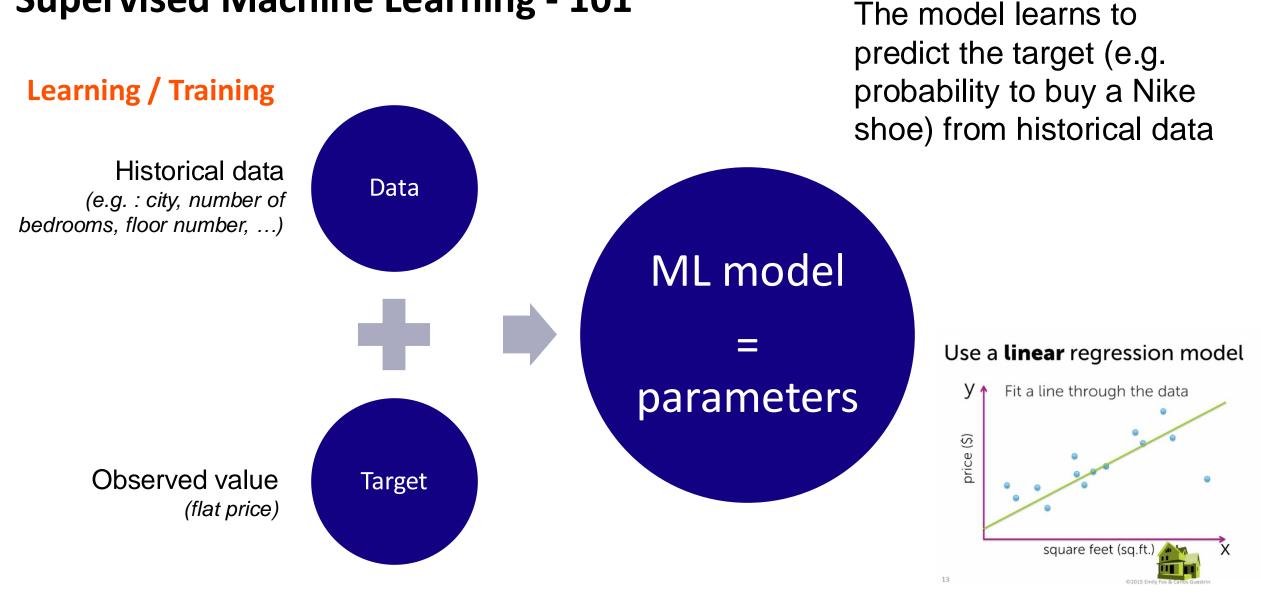


The model learns to

CRITEO

Supervised Machine Learning - 101

Source:

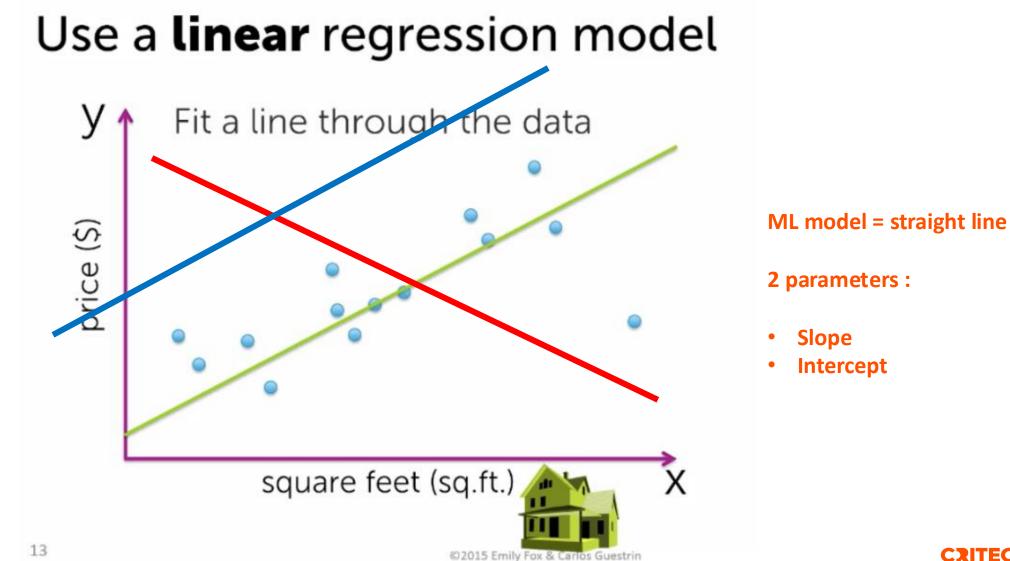


Supervised Machine Learning - 101

CRITEO

5

Supervised Machine Learning - 101



C2ITEO

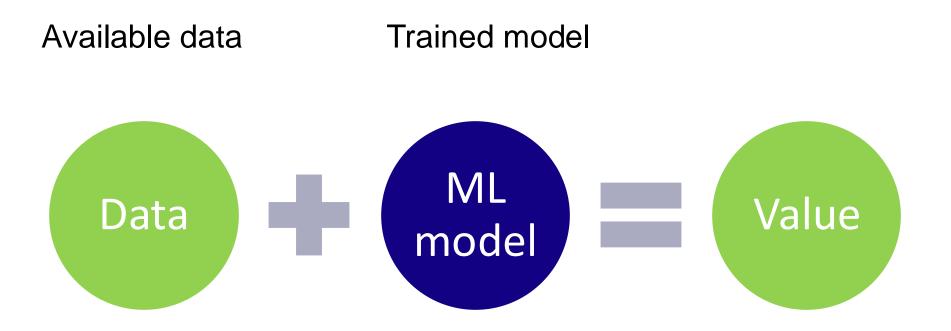
Intercept

6

Supervised Machine Learning - 101

• What's my flat price?

Prediction / Inference



In Criteo context, data = publisher & advertiser data

In Criteo context, value = Click / Visit / Sale

Data scarcity

The user privacy context

Government & Regulators

GDPR & CCPA lead the way in regulating privacy and data protection to prevent **True Privacy risks**

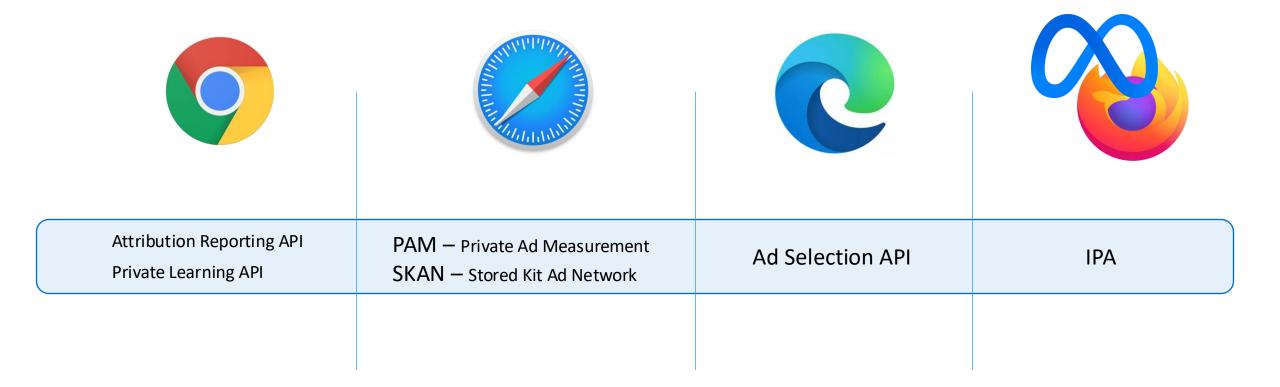
Gatekeeper Restrictions

Browsers place limitations on third-party cookies, pretexting "posing greater risks than firstparty cookies"

Evolution of web advertising Apple ITP limits third-party cookie 2017 tracking in Safari Global Data Protection Regulation (GDPR) 2018 rolls out in the EU Firefox blocks cross-site tracking Microsoft Edge introduces 2019 tracking prevention 2020 California Consumer Privacy Act (CCPA) goes into effect Apple IDFA opt-in requirement rolls 2021 out 2022 Firefox rolled out Total Cookie Protection (TCP) We are here Google is expected to deprecate third-2025 party cookies in Chrome

Ad performance measurement post-3PC: a fragmented landscape

Different approaches from various browsers, discussed at the W3C, and meant to converge



Many ways of ensuring Privacy !

Table 1. Overview of Key Technical Approaches Essential for PPDSA.

Technique	Description	Value	Limitations	
K-anonymity	Transforms a given set of k records in such a way that in the published version, each individual is indistinguishable from the others	Reduces the risk of re- identification	Vulnerable to reidentification attack if additional public information is available	
Differential Privacy	Adds noise to the original data in such a way that an adversary cannot tell whether any individual's data was or was not included in the original dataset	Provides formal guarantee of privacy by reducing the likelihood of data reconstruction or linkage attacks	Limited to simpler data types; challenge in managing tradeoff between privacy, accuracy, or utility of data	
Synthetic Data	Information that is artificially manufactured as an alternative to real-world data	Preserves the overall properties or characteristics of the original detect	May still disclose privacy- sensitive information contained in the original dataset; difficult to mirror real-world data	
Secure Multiparty Computation	Allows multiple parties to jointly perform an agreed computation over their private data, while allowing each party to learn only the final computational output	Increases the ability to compute over distributed datasets without revealing original data	Higher computational and communication costs/burdens, and difficult to scale	
Homomorphic Encryption	Allows computing over encrypted data to produce results in an encrypted form	Only authorized users can see original and/or computed data	Higher computational cost and time	
Zero-Knowledge Proof	Allows one party to prove to another party that a particular statement is true without revealing privacy-sensitive information	Increases ability to validate information without disclosing sensitive information	Cost and scalability	
Trusted Execution Environment	Creates a secure, isolated execution environment parallel to the main operating system to process sensitive data	Allows faster secure analytics on data compared to encryption- based techniques	Introduces other ways sensitive data can leak	
Federated Learning	Allows multiple entities to collaborate in building an ML model on distributed data without sharing original data	Minimizes data sharing while training a combined model	Various data reconstruction or inference attacks are still possible; require consistency across datasets held by multiple entities	

Do not forget that pseudonymisation also stands for a PET!

https://www.whitehouse.gov/wpcontent/uploads/2023/03/National-Strategy-to-Advance-Privacy-Preserving-Data-Sharing-and-Analytics.pdf

Main privacy mechanisms

ARA	Noise added to data Trusted Server (backend: TEE)
PAM	Noise added to data
SKAN	Trusted Server (backend: MPC)
Masked Lark	Noise added to data
Ad Selection	Trusted Server (backend: TEE)

IPA

Noise added to data Trusted Server (backend: MPC)

Main privacy mechanisms

ARA	Noise added to data Trusted Server (backend: TEE)
PAM	Noise added to data
SKAN	Trusted Server (backend: MPC)
Masked Lark	Noise added to data
Ad Selection	Trusted Server (backend: TEE)

IPA

Noise added to data Trusted Server (backend: MPC)

Future-proof AI post-3PC: a missing use-case

Current state (3PC) :

We have access to

- Contextual features
- X-device user features
- X-advertiser user features
- Advertiser-centric features

We don't have access to

N/A

Future-proof AI post-3PC: a missing use-case

Short-term future state (without 3PC) - 2025:

We have access to

- Contextual features
- 12-bit & noisy advertiser-centric features
- Noisy aggregated or granular labels

We don't have access to

- X-device user features
- X-advertiser user features

We are influencing the future of AI on the open internet

Collaborating closely with Google Chrome to

maximize Privacy Sandbox utility and ensure the use cases of our customers and partners are addressed.

Sharing with the industry

- feedback on Github,
- online articles detailing our experiments,
- private session of knowledge sharing,
- collaborative testing opportunities.

Participating in W3C community and working groups Web Incubator (WICG) & Private Advertising Technology (PATCG/PATWG).

W3C[®]

3

Working with regulators to define test frameworks, participate to the tests and share feedback on business impacts.

GitHub

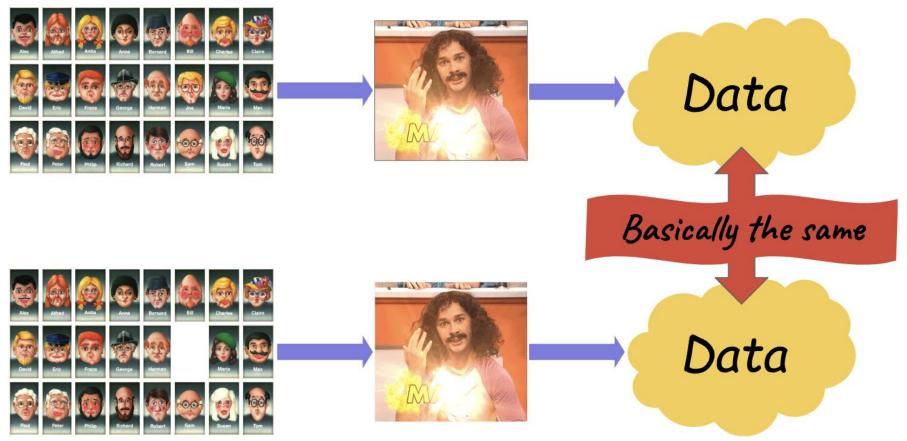
Outline

A minimal obfuscation mechanism to consider: Differential Privacy

docs-and-reports / design-dimensions / Dimensions-with-General-Agreement.md ↑ Top Raw [🖵 🕁 Preview Code Blame 62 lines (34 loc) · 6.4 KB reached general agreement that data join could potentially occur off device within a some type of server side architecture. This is conditional on having adequate protections for any data that leaves a device, in line with our security and privacy goals. **Privacy defined at least by Differential Privacy** We've explored three main definitions of privacy: 1. Information theoretic 2. K-anonymity 3. Differential privacy The community group has reached general agreement that the Private Measurement Technical Specification MVP should use a definition of privacy based on differential privacy. This does not preclude the use of other privacy definitions in conjunction with differential privacy, however any proposal should aim to provide differential privacy guarantees.

Source: W3C PATCG github repository

The promise



Differential Privacy

How ? Quézako

Randomness

Differential Privacy

How ? Quézako

Differential Privacy

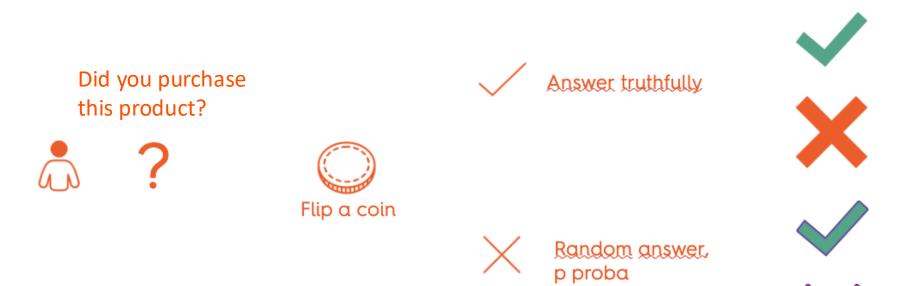
requires Randomness

adds

What is noise?

Did a user convert after clicking on a Criteo ad?

What is noise?



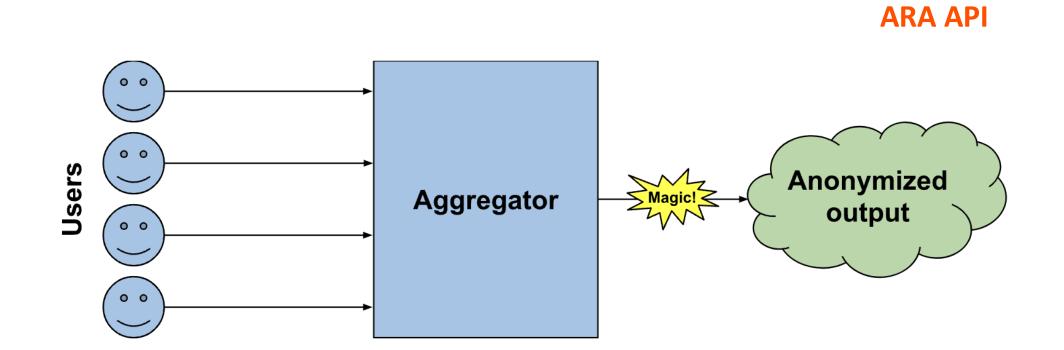
How the noise is calibrated/chosen?

Epsilon

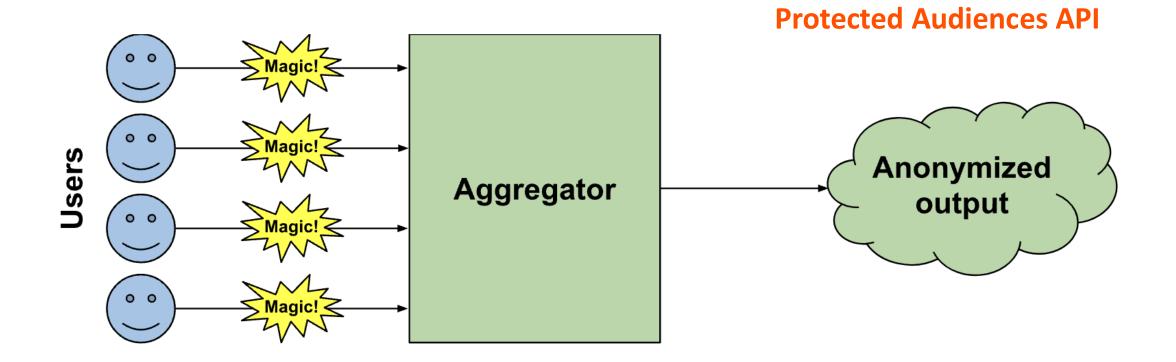
More budget = less privacy = less noise = more performance

Budget is given by Chrome Criteo can only optimise the budget planning

Quézako – Global DP



Quézako – Local DP



Main AI learning paradigms

Paradigm	Probability to happen	AI Performance	Flexibility	Main cost
Learning on aggregated data	High	Medium	Medium	Al Research
Learning on event-level data	Medium	Low to High	Low to High	Al Research
Learning in a trusted server	Medium	Low to High	Low to High	AI/Platform/Infra Engineering

All learning paradigms involve a specific instance of differential privacy

Outline

CRITEO

Open data & AI competitions

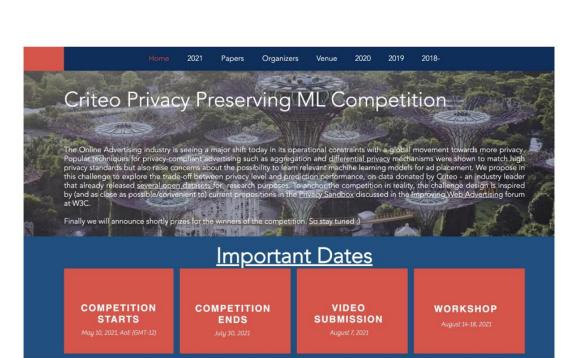
Criteo Research Datasets

Terms of use.

We regularly release datasets to ML practitioners and enthusiasts. It is to be noted that Criteo holds the record for releasing the world's largest truly public ML dataset at a healthy ITB in size and 4B event lines.

All datasets have been anonymized to confirm to privacy standards.

- Criteo Uplift Modeling Dataset (CRITEO-UPLIFT-1)
- Criteo Sponsored Search Conversion Logs
- Criteo Attribution Modeling for Bidding Dataset
- Kaggle Display Advertising dataset
- Criteo ITB click logs
- Dataset for evaluation of couterfactual algorithms
- Criteo @Hugging Face



Top-tier AI Research

Position Paper: Open Research Challenges for **Distribution-Aware Mean Estimation** Private Advertising Systems under Local under User-level Local Differential Privacy Differential Privacy Matilde Tullii *², Solenne Gaucher*², Hugo Richard*¹, Eustache **Corentin Pla** Hugo Richard Maxime Vono Diemert¹, Vianney Perchet^{1, 2}, Alain Rakotomamonjy¹, Clément Criteo AI Lab Criteo AI Lab Criteo AI Lab Calauzènes¹, and Maxime Vono¹ ¹Criteo AI Lab, France ²ENSAE, Crest, France **Personalised Federated Learning On Heterogeneous Feature Spaces** Local Differential Privacy for Regret Minimization in **Reinforcement Learning** Alain Rakotomamonjy^{*1} Maxime Vono^{*1} Hamlet Jesse Medina Ruiz¹ Liva Ralaivola¹ **Evrard Garcelon** Vianney Perchet Facebook AI Research & CREST, ENSAE CREST, ENSAE Paris & Criteo AI Lab Paris, France Palaiseau, France, evrard@fb.com vianney@ensae.fr

> **Ciara Pike-Burke** Imperial College London London, United Kingdom c.pikeburke@gmail.com

Matteo Pirotta Facebook AI Research Paris, France matteo.pirotta@gmail.com

Application to production data and feedbacks to the industry

- 2023/03 Alonzo Velasquez (Chrome PM) : <u>https://github.com/WICG/turtledove/issues/435</u>
 - Short term : noisy event-level reporting
 - Long term : learning eventually outsourced to a TEE-based trusted server
- From 2023/03 to 2023/06 Multiple Github issues/presentations of Charlie on event-level label DP : <u>London PATCG slides</u>
- 2023/09 Criteo follow-up presentation on ML training using label DP to Chrome + PATCG
- 2024/02 Charlie on future of learning : <u>https://github.com/WICG/turtledove/issues/1017</u>
- 2024/04 Criteo follow-up presentation on ML training using DP to Boston PATCG
- 2024/06 Criteo/Chrome WS

CRITEO

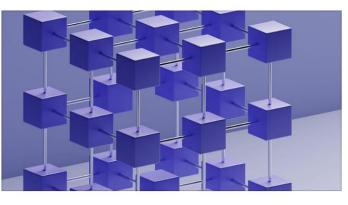
Application to production data and feedbacks to the industry

An Introduction to PETs for Attribution and Reporting

To avoid direct cross-site tracking, several browsers are developing attribution and reporting proposals based on Privacy-Enhancing Techs.

Maxime Vono

Apr 25 · 10 min read



PETs in Advertising: Scenarios for Secure Multi-Party Computation

It aims to deep-dive into the tech details of MPC for ads use cases including private attribution, reporting and campaign optimisation

Maxime Vono May 4 · 10 min read

Thank you!

