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Image (+ text) as input, textual caption
as output
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Multimodal learning tasks and models

• Which Multimodal models?
Vision Encoder + LLM Decoder
Image (+ text) as input, textual caption
as output

• Focus on Large Multimodal Models
(LMMs) processing visual and language
data
=⇒ Popular for solving Visual captioning,

question-answering, reasoning tasks

5 / 20



Which Multimodal models?

6 / 20



Which Multimodal models?

6 / 20



Which Multimodal models?

6 / 20



Which Multimodal models?

6 / 20



Which Multimodal models?

6 / 20



Which Multimodal models?

6 / 20



Which Multimodal models?

7 / 20



CoX-LMM (NeurIPS24): Explaining/Monitoring LMMs

Monitoring LMMs: Supervising, Observing, Tracking, Watching,
Overseeing, Surveying, . . .
• Pretrained LMM f = Visual encoder (fV ) + Connector (C) +

Language model (fLM )

• Captioning dataset S = {(Xi, yi)}N
i=1. Images Xi ∈ X and captions

yi ⊂ Y

• A token of interest t ∈ Y (Eg. ‘Dog’, ‘Cat’ etc.)

• Analysis: Understand internal representations of f about t in terms of
high-level concepts

CoX-LMM: A Concept based eXplainability framework for LMMs
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Monitoring LMM: CoX-LMM
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Multimodal concept grounding

• Input to fLM - Concatenated sequence of tokens: (1) Visual tokens C(fV (X)), (2)
textual tokens previously predicted by fLM

• Caption predicted by fLM trained for next-token prediction task
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Monitoring LMM: CoX-LMM
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Multimodal concept grounding

• Extract residual stream representations of t from f for a relevant set of M images X
• Collect all such B-dimensional representations as columns of matrix Z ∈ RB×M
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Monitoring LMM: CoX-LMM
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Multimodal concept grounding

• Dictionary learning for concept extraction. Semi-NMF optimization:
U∗,V∗ = arg minU,V ||Z−UV||2F +λ||V||1 s.t. V ≥ 0, and ||uk||2 ≤ 1 ∀k ∈ {1, ...,K}

• Columns of U∗ ∈ RB×K – concept vectors. Rows of V∗ ∈ RK×M – concept activations
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CoX-LMM: Multimodal concept grounding!
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Multimodal concept grounding

• Text grounding: Decode concept vector uk with fLM head and extract top tokens
• Visual grounding: Extract most activating samples for uk (via activations vk)
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Example multimodal concepts
Multimodal concepts: uk ∈ U∗ simultaneously grounded in both vision and text!

• Visual: Most activating images of uk from X (via vk ∈ RM ) → Xk,MAS

• Textual: unembedding matrix WU decode uk and extract the most probable tokens → TkExample concepts for ‘Dog’
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Example multimodal concepts
Multimodal concepts: uk ∈ U∗ simultaneously grounded in both vision and text!
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Multimodal grounding evaluation
• CLIPScore or BERTScore (for captions) between Xk,MAS and Tk (vs Rk).
• Averaged over all MAS samples or all their associated captions.
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Using the concept dictionary
• For a new image X where t ∈ f(X), extract zX and compute the projection on U∗,
v(X) = arg minv≥0 ||zX −U∗v||22 + λ||v||1

• Most activating concepts: From v(X) we can extract the concept activations with
largest magnitudes, ũ(X)
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Using the concept dictionary
What happens if we fine-tune the LMM?
• How do concepts encoded with the initial model change when we fine-tune it?
• Is it possible to manipulate the output of an LMM without fine-tuning it?
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Change of concepts
• matching function m : i→ j∗, for
ua

i ∈ Ua:

m(i) = argmax
ub

j
∈Ub

cos(ua
i , u

b
j)

• Concepts are refined, emerged, or
diminished. Surf 
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Figure: Concepts text grounding change after
fine-tuning. Illustration of text grounding for
concepts (TOI = person) from fa and their match
from fb, after fine-tuning to focus more on places.

15 / 20



Concept recovery

1. Associate each concept ua
k in the original

model with a subset of samples:
Ak = {m | k = argmax

i
|va

i (xm)|}.

2. For each sample, xm,m ∈ Ak define
δa→b

m = bm − am as an individual shift
vector, and then aggregate them for one
concept:

∆a→b
k (ua

k) = 1
|Ak|

∑
m∈Ak

δa→b
m

3. Shift an original concept with the shift
vector:

us
k = ua

k + α ∆a→b
k (ua

k)
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Concept recovery
• Recovery metric : T-Overlap(u, u′) = 100× |Twords(u)∩Twords(u′)|

|Twords(u)|
• Comparison between T-Overlap(ua

k, u
b
m(k)) and T-Overlap(us

k = ua
k + α ∆a→b

k (ua
k), ub

m(k))
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Shift consistency, steering

• Shift consistency: how aligned are
individual shift vectors corresponding to a
concept

Consistency(ua
k) =

1
|Ak|

∑
m∈Ak

cos(δm,∆a→b
k (ua

k))

• Steering the captioning:
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 Overall Pearson correlation: 0.89 
 Overall p-value: 0.0000

VG-place (r=0.86)
VG-color (r=0.90)
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Conclusion

• Monitoring LMMs with multimodal
concepts

• Analyzing MLLMs’ internal representations
after fine-tuning:

Demonstrated that post-fine-tuning
concepts can often be recovered from
the original model
Steering model behavior by modifying
features directly, without additional
training

→ Can steering vectors define/learn a more
general steering function? The revanche of
REFT on PEFT!
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Thank you for your attention!

Matthieu Cord
Sorbonne Université, valeo.ai

Collaborators: Jayneel Parekh, Pegah Khayatan, Mustafa Shukor, Alasdair Newson

Project webpage: https://jayneelparekh.github.io/LMM_Concept_Explainability/

Code: https://github.com/mshukor/xl-vlms
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