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MACHINE LEARNING MODELS CAN LEAK PERSONAL INFORMATION

• Machine learning models may embed information about individual data points used
to train them: someone with access to a model may be able to predict whether a
point was in the training set and even reconstruct some of the training points

(figure from [Nasr et al., 2023a])

→ when trained on personal data, AI models cannot in general
be considered as “anonymous” (see recent EDPB opinion)

• Privacy auditing aims to address questions like: How to assess the privacy risks of
model releases? How to prove to third parties that privacy safeguards are in place? 1

https://www.edpb.europa.eu/system/files/2024-12/edpb_opinion_202428_ai-models_en.pdf


POST-HOC PRIVACY AUDITING
WITH ATTACKS



MEMBERSHIP INFERENCE ATTACKS (MIA)

• Membership Inference Attack (MIA): predict whether a person’s data was used to
train a model [Shokri et al., 2017, Carlini et al., 2022, Zarifzadeh et al., 2023]
[Hayes et al., 2019, Mireshghallah et al., 2022]

• Intuition: models are more confident on data they have seen in training
2



WHY MIA FOR GENERAL-PURPOSE PRIVACY AUDITING?

1. MIA is generic: unlike reconstruction attacks, MIA applies to predictive and
generative models, including LLMs, in various threat scenarios

2. MIA is the “mother of all privacy attacks”: the adversary only needs to infer 1 bit of
information (whether a particular training point was used or not). This bit is not
always sensitive, but if one cannot predict it, then all other attacks are bound to fail

3. MIA has a deep connection with Differential Privacy (DP), the gold standard
approach to control the privacy leakage of algorithms (more on this later)
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MIA FOR PRIVACY RISK ASSESSMENT

• MIA attacks allow to assess the privacy risk of releasing a model: we can quantify
on-average attacker performance, but also identify data points that are most at risk

• Implemented in some open-source librairies (e.g., Privacy Meter)

• Caution: using known MIA attacks may be sufficient for a “best effort” assessment
(e.g., in the context of GDPR), but stronger attacks could exist! 4

https://github.com/privacytrustlab/ml_privacy_meter


DIFFERENTIAL PRIVACY
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DIFFERENTIAL PRIVACY

Definition ([Dwork et al., 2006], informal)
A randomized algorithm A is (ϵ, δ)-differentially private (DP) if for all neighboring
datasets D = {x1, x2, . . . , xn} and D′ = {x1, x′2, x3, . . . , xn} and all sets S:

Pr[A(D) ∈ S] ≤ eϵ Pr[A(D′) ∈ S] + δ.

• Sufficient condition: log-ratio of probabilities bounded by ϵ with prob. at least 1− δ

• DP is the gold standard to obtain robust privacy guarantees, and is increasingly used
in real-world deployments (e.g., US Census since 2020)

• DP is typically enforced by randomizing certain steps of the algorithm, thereby
introducing a privacy-utility trade-off
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LINK BETWEEN DIFFERENTIAL PRIVACY AND MIA
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• DP upper-bounds the performance of any MIA

• Conversely, the performance of a MIA lower-bounds the DP parameters (ϵ, δ)
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MIA FOR AUDITING DIFFERENTIAL PRIVACY

MIA can thus be used to audit differentially private algorithms:

• We can disprove DP claims and catch bugs in open-source DP implementations
[Tramer et al., 2022, Arcolezi and Gambs, 2023]

• We can study the tightness of DP guarantees in various threat models
[Nasr et al., 2021, Nasr et al., 2023b, Cebere et al., 2024]

However, MIA cannot be used to prove that a given DP guarantee is valid
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CONFIDENTIAL PROOF OF
PRIVATE TRAINING



PRIVATELY PROVING A PRIVACY CLAIM

• Setting: A model trainer claims to have trained a model with (ε, δ)-DP on his/her
confidential data, and an external auditor wants to verify this privacy claim

• The audit must satisfy the following requirements:
1. provide a certificate of (ε, δ)-DP if the model was trained as claimed

2. be robust to malicious model trainers

3. should not leak any information about the data or model
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CONFIDENTIAL-DPPROOF [SHAMSABADI ET AL., 2024]

• Solution: use zero-knowledge proofs from cryptography to verify that the private
training algorithm was executed correctly
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CONFIDENTIAL-DPPROOF [SHAMSABADI ET AL., 2024]

• The approach is practical for learning models with up to ∼10,000 parameters, but
does not yet scale to large deep models
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TAKE-HOME MESSAGES

• AI models can be personal data!

• Membership inference attacks (MIA) are a versatile tool for post-hoc privacy auditing
(privacy risk assessment, auditing differential privacy)

• Privacy certificates can be proactively generated during training while keeping the
model and data confidential, using tools from cryptography
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