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Optimization in Deep Learning

Figure 1: Visualization of a loss landscape (VGG-56 on CIFAR-10)
https://www.cs.umd.edu/ tomg/projects/landscapes/

Li et al., Visualizing the Loss Landscape of Neural Nets, NeurIPS 2018
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Problem statement

Problem

min
x

F (x) := E(f (x , ξ)) w.r.t. x ∈ Rd

Assumptions

I f ( . , ξ): nonconvex differentiable function

I regularity assumptions on f (smoothness, coercivity of F , etc.)

I (ξn : n ≥ 1): iid copies of r.v ξ revealed online
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ADAM : an adaptive algorithm
[Kingma and Ba, 2015]

I Regime : constant step size γ > 0 .

Algorithm 1 ADAM (γ, α, β, ε)

1: x0 ∈ Rd ,m0 = 0, v0 = 0, γ > 0, ε > 0, (α, β) ∈ [0, 1)2.
2: for n ≥ 1 do
3: mn = αmn−1 + (1− α)∇f (xn−1, ξn)
4: vn = βvn−1 + (1− β)∇f (xn−1, ξn)2

5: m̂n = mn
1−αn

6: v̂n = vn
1−βn

7: xn = xn−1 − γ
ε+
√
v̂n
m̂n

xn = xn−1 − γ∇f (xn−1, ξn) (SGD for comparison)
8: end for
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From Discrete to Continuous Time
The ODE Method [Ljung, 1977, Kushner and Yin, 2003]
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Continuous Time System
similar approach to [Su, Boyd and Candès, 2016]

Non autonomous ODE

If z(t) = (x(t),m(t), v(t)),

ż(t) = h(t, z(t)) (ODE)

Theorem (Convergence)

lim
t→∞

d(x(t),∇F−1({0})) = 0 .

c1(t) ẍ(t) + c2(t) ẋ(t) +∇F (x(t)) = 0 ,

I 2nd vs 1st order: acceleration (even if oscillations).

I Escaping local traps (saddle points)
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Long run convergence of the ADAM iterates

I No a.s convergence : regime n→∞ then γ → 0

Theorem (ergodic convergence of the ADAM iterates)

Let x0 ∈ Rd , γ > 0, (zγn : n ∈ N), zγ0 = (x0, 0, 0). Under the same
assumptions and :

I Stability assumption: supn,γ E‖z
γ
n ‖ <∞ .

Then, for all δ > 0,

lim
γ↓0

lim sup
n→∞

1

n

n∑
k=1

P(d(xγn ,∇F−1({0})) > δ) = 0 . (1)
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Thank you for your attention

Continuous limit

Adam ODE

Discretization

For more details: submitted article, available on arXiv.

AB, P. Bianchi. Convergence and Dynamical Behavior of the
ADAM Algorithm for Non Convex Stochastic Optimization.
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An economic motivation
Online repeated auctions

Ad slot valued v . Bid p =⇒ auctioneer infers v .
Auctioneer’s revenue ↗ while bidder’s utility ↘ when v public.

AuctionAd Slot

Google
(auctioneer)

Criteo

Google

Amazon

. . .

Bidders

p1

pn

pn−1

Customersvn ∼ µn

Online advertisement auction system

Bidder’s goal: short term utility and hide value distribution µn

Boursier & Perchet Privacy and OT MLITRW ’19, Criteo Paris 2 / 7



Toy example

Player: minimizes utility loss

min
x∈X⊂Rd

x>yk

yk depends on private type k ∈ {1, . . . ,K} with prior p0 ∈ ∆K .
Adversary: observes x and infers k

Program in previous literature1:

min
µ1,...,µK

K∑
k=1

p0(k) Ex∼µk
[
x>yk

]
such that E[KL(px , p0)] ≤ ε

1Eilat, R., Eliaz, K., and Mu, X. (2019). Optimal privacy-constrained
mechanisms

Boursier & Perchet Privacy and OT MLITRW ’19, Criteo Paris 3 / 7



General formulation of the problem

Our general program:

inf
γ∈P(X×Y)
π2#γ=p0

∫
X×Y

(c(x , y) + λD(px , p0)) dγ(x , y) (P-OPT)

type y ∼ p0 ∈ P(Y)

π2#γ(A) = γ(X × A)

c = utility loss ; D = privacy loss (e.g. KL)

Boursier & Perchet Privacy and OT MLITRW ’19, Criteo Paris 4 / 7



Theoretical results

Theorem (Convexity)
If D is an f -divergence, then (P-OPT) is convex in γ.

→ (P-OPT) easy for finite X and Y .

Theorem (Finite prior support)
If |supp(p0)| = K , for all ε > 0, we can look for a solution of
(P-OPT) with support of size K (K + 2).

→ finite dimension , but not jointly convex /

Boursier & Perchet Privacy and OT MLITRW ’19, Criteo Paris 5 / 7



Sinkhorn divergence minimization

Definition (Sinkhorn divergence)

OTc,λ(µ, ν) = inf
γ∈Π(µ,ν)

∫
cdγ + λ

∫
log

(
dγ

dµdν

)
dγ

entropic regularization =⇒ fast OT distances approximation2

If D=KL, (P-OPT) equivalent to

inf
µ∈P(X )

OTc,λ(µ, p0).

2Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal
transport

Boursier & Perchet Privacy and OT MLITRW ’19, Criteo Paris 6 / 7



Recap

utility-privacy trade-off motivated by economic mechanisms
general regularized problem
convexity + finiteness under mild assumptions
benefit from Sinkhorn divergence
find our simulations in the paper

Slides, code and paper at eboursier.github.io

Thank you !

Boursier & Perchet Privacy and OT MLITRW ’19, Criteo Paris 7 / 7
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Bayesian computation and machine learning

Nicolas Chopin (ENSAE, IPP)
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PAC-Bayes

Uses as an estimator the expectation of pseudo-posterior:

p(x |y) ∝ p(x) exp{−γR(x , y)}

where R(x , y) is the empirical risk, for parameter x and data y .
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How to compute this expectation?

1. Fast variational approximation: but can you we obtain the
same non-asymptotic bounds? See Alquier, Ridgway and C.
(2016, JMLR).

2. Monte Carlo methods: isn’t that slow? not if you do it right,
e.g. Sequential Monte Carlo (Ridgway et al, NIPS, 2014).
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Other applications of Bayesian computation

1. Probabilistic machine learning.

2. Sequential learning: use Sequential Monte Carlo?

3. Non-convex optimisation

4



Improved Algorithms for Conservative 
Exploration in Bandits

Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric and Matteo Pirotta

Facebook AI Research
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Problem: How to learn an optimal policy 
without sacrificing much revenue?

(aka: how to perform exploration in a conservative way?)



Conservative Condition
Mean revenue of 

current policy

Mean revenue of the 
learning algorithm

Controls maximum 
revenue lost during 

learning 

Should hold uniformly 
in time



Previous Work: ❏ Theoretically optimal algorithms for 
conservative exploration (CUCB) (Wu et al. 
2016, Kazerouni et al. 2017)

Contributions:
➔ Improved empirical 

performance in multi-armed 
and linear bandit (CUCB2)

➔ Novel relaxed conservative 
condition



CUCB (previous algorithm)

- Two phase algorithm
a. Computes optimistic arm
b. Checks a lower bound on the total revenue

=> impacts empirical performance!

CUCB2 (our algorithm)

- Computes set of safe arms
- Plays the optimistic arm among safe arms

    => same regret but better performance!

-

Example: CUCB approach is suboptimal



Jester Jokes Dataset (Goldberg et al. 2001 )

- Cold start problem
- Linear features



A PAC-Bayes perspective on binary-activated deep
neural networks

Benjamin Guedj
https://bguedj.github.io

MLRW #5, Criteo
October 2, 2019
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Context

Learning is to be able to generalise!

PAC-Bayes has been successfully used to analyse and understand
generalisation abilities of machine learning algorithms.

 G., ”A Primer on PAC-Bayesian Learning”, invited for publication
in the Proceedings of the French Mathematical Society,
https://arxiv.org/abs/1901.05353

: G. & Shawe-Taylor, ”A Primer on PAC-Bayesian Learning”, ICML
2019 tutorial https://bguedj.github.io/icml2019/index.html

Most PAC-Bayes generalisation bounds are computable tight
upper bounds on the population error, i.e. an estimate of the error
on any unseen future data.

PAC-Bayes bounds hold for any distribution on hypotheses. As
such, they are a principled way to invent new learning algorithms.
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This spotlight

 G. Letarte, P. Germain, B. G., F. Laviolette. Dichotomize and
Generalize: PAC-Bayesian Binary Activated Deep Neural Networks, to
appear in NeurIPS 2019
https://arxiv.org/abs/1905.10259

We focused on DNN with a binary activation function: surprisingly
effective while preserving low computing and memory footprints.

Very few meaningful generalisation bounds for DNN
Breakthrough: SOTA PAC-Bayes generalisation bound

How to train a network with non-differentiable activation function?
Breakthrough: training by minimising the bound (SGD + tricks)

Who cares? Generalisation bounds are a theoretician’s concern!
Breakthrough: Our bound is computable and serves as a safety
check to practitioners
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Binary Activated Neural Networks
x ∈ Rd0 , y ∈ {−1, 1}

Architecture:

L fully connected layers

dk denotes the number of neurons of
the k th layer

sgn(a) = 1 if a > 0 and sgn(a) = −1
otherwise

Parameters:

Wk ∈ Rdk×dk−1 denotes the weight
matrices.

θ= vec
(
{Wk }

L
k=1

)
∈RD

x1 · · · xd

sgn sgn sgn

sgn sgn sgn

sgn

Prediction

fθ(x) = sgn
(
wLsgn

(
WL−1sgn

(
. . . sgn

(
W1x

))))
,
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Generalisation bound

For an arbitrary number of layers and neurons, with probability at least
1 − δ, for any θ ∈ RD

Rout(Fθ) 6

inf
C>0

{
1

1 − e−C

(
1 − exp

(
−CRin(Fθ) −

1
2 ||θ− θ0||

2 + log 2
√

m
δ

m

)) }
,

where

Rin(Fθ) = E
θ ′∼Qθ

Rin(fθ ′) =
1
m

m∑
i=1

[
1
2
−

1
2

yiFθ(xi)

]
.
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(A selection of) numerical results

Model name Cost function Train split Valid split Model selection Prior

MLP–tanh linear loss, L2 regularized 80% 20% valid linear loss -
PBGNet` linear loss, L2 regularized 80% 20% valid linear loss random init
PBGNet PAC-Bayes bound 100 % - PAC-Bayes bound random init

PBGNetpre
– pretrain linear loss (20 epochs) 50% - - random init
– final PAC-Bayes bound 50% - PAC-Bayes bound pretrain

Dataset
MLP–tanh PBGNet` PBGNet PBGNetpre

ES ET ES ET ES ET Bound ES ET Bound

ads 0.021 0.037 0.018 0.032 0.024 0.038 0.283 0.034 0.033 0.058
adult 0.128 0.149 0.136 0.148 0.158 0.154 0.227 0.153 0.151 0.165
mnist17 0.003 0.004 0.008 0.005 0.007 0.009 0.067 0.003 0.005 0.009
mnist49 0.002 0.013 0.003 0.018 0.034 0.039 0.153 0.018 0.021 0.030
mnist56 0.002 0.009 0.002 0.009 0.022 0.026 0.103 0.008 0.008 0.017
mnistLH 0.004 0.017 0.005 0.019 0.071 0.073 0.186 0.026 0.026 0.033

6 7
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Thanks!

We have several PhD / postdoc / visiting researcher positions available
in my group, based in London and affiliated with Inria and UCL.

Feel free to reach out!
https://bguedj.github.io
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Positive solutions for Large Random Linear Systems
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CNRS & Université Paris Est

joint work with Pierre Bizeul
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A Large Random Linear System

We are interested in the equation

x = 1+
A

α
√
N
x

where

I x is a N × 1 unknown vector,

I 1 is a N × 1 vector of ones,

I A is a N ×N random matrix with i.i.d. entries N (0, 1),

I α is a positive scalar parameter to be tuned.

Questions

I Does this system admit a solution x =

(
I −

A

α
√
N

)−1

1 ?

I Conditions to get a solution x with positive components?

Motivation

I Feasibility and stability in ecological networks.
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Confinement of the spectrum of A√
N

Theorem: The Circular Law (Ginibre, Metha, Girko, Tao & Vu, etc.)

The spectrum of A√
N

converges to the uniform probability on the disc
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Existence of a solution .. with no positive components

I From the spectrum confinement property,

x =

(
I −

A

α
√
N

)−1

1 exists for α > 1

I but

xk ∼ N
(
1,

1

α2 − 1

)
i.i.d. as N →∞

I As a consequence

P
{

inf
k∈[N ]

xk > 0

}
∼ P {xk > 0}N −−−−→

N→∞
0 .

⇒ no positive solutions
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Positivity of the solution

Consider now the case α = αN −−−−→
N→∞

∞

Theorem (phase transition, Bizeul-N. ’19)

I If
αN ≤δ

√
2 log(N) ⇔ αN ≤ (1− δ)

√
2 log(N)

then

P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

0 ⇒ no positive solutions.

I If
αN ≥δ

√
2 log(N) ⇔ αN ≥ (1 + δ)

√
2 log(N)

then

P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

1 ⇒ positive solutions.

5



Positivity of the solution

Consider now the case α = αN −−−−→
N→∞

∞

Theorem (phase transition, Bizeul-N. ’19)

I If
αN ≤δ

√
2 log(N) ⇔ αN ≤ (1− δ)

√
2 log(N)

then

P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

0 ⇒ no positive solutions.

I If
αN ≥δ

√
2 log(N) ⇔ αN ≥ (1 + δ)

√
2 log(N)

then

P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

1 ⇒ positive solutions.

5



Positivity of the solution

Consider now the case α = αN −−−−→
N→∞

∞

Theorem (phase transition, Bizeul-N. ’19)

I If
αN ≤δ

√
2 log(N) ⇔ αN ≤ (1− δ)

√
2 log(N)

then

P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

0 ⇒ no positive solutions.

I If
αN ≥δ

√
2 log(N) ⇔ αN ≥ (1 + δ)

√
2 log(N)

then

P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

1 ⇒ positive solutions.

5



Phase transition (gaussian case)

I We plot the frequency (over 500 trials) of positive solutions for the linear system

x = 1+
1

κ
√

log(N)

A
√
N
x

as a function of the normalization parameter κ.
I As expected, we observe threshold phenomenon around the critical value κ =

√
2.
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A heuristics for the critical scaling

1. Unfold the resolvent and write

xk = e
∗
k

(
I −

A

α
√
N

)−1

1

= 1 +
Zk

α
+

Rk

α2
(remainder term)

2. Notice that

Zk ∼ N (0, 1) i.i.d. and min
k∈[N ]

Zk ∼ −
√

2 log(N)

by extreme value theory.

3. Conclude

min
k∈[N]

xk ≈ 1 +
mink∈[N] Zk

α
+ · · · ≈ 1−

√
2 log(N)

α

4. The key control of the remainder term Rk can be proved via gaussian
concentration.

maxk∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 and
mink∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 .

Thank you for your attention!
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Bringing light to AI
Iacopo Poli – Lead Machine Learning Engineer

iacopo@lighton.io



INCREASING DEMAND OF COMPUTE
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ECOLOGICAL IMPACT OF AI
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ECOLOGICAL IMPACT OF AI
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OPTICAL PROCESSING UNIT

10/01/2019 LightOn SAS 6

1M input – 1M output
Speed: 2 kHz 

Power:30W



RANDOM FEATURES AND PROJECTIONS
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LIGHT SCATTERING
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Credit: Emmanuel Bossy- Simsonic Software Georges de la Tour – Saint Joseph charpentier
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LIGHT SCATTERING
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REINFORCEMENT LEARNING
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REINFORCEMENT LEARNING
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NOT ONLY IMAGES...
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Credit: François Boniface - Lighton
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Credit: François Boniface - Lighton



TRY IT OUT !
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Thank you !













The RecoGym Challenge 100 

RecoGym is recommendation simulator/game 
that allows us to:

• Simulate an A/B Test from the comfort of your own 
home, allowing evaluation that is currently 
impossible using static datasets

• You too can experience the excitement and joy of 
negative and neutral A/B Tests!

• Prize of 1000 euros (deadline 30 Nov)

• https://github.com/criteo-research/reco-gym

@RecoGym

https://github.com/criteo-research/reco-gym




Your amazing RecoGym
Agent here!



Okay, what is the challenge?

Within the challenge, there are two tasks:

• RecoGym Challenge 100: Learning to recommend with 100 just 
actions.  Prize 1000 euros.  Live now!

• RecoGym Challenge 10 000: Learning to recommend in a larger 
action spaces. Prize 2000 euros. Stay Tuned



Important links

Follow us on Twitter: @RecoGym

RecoGym challenge website: 
https://sites.google.com/view/recogymchallenge/home

RecoGym repo: https://github.com/criteo-research/reco-gym
(the simulator, along with many tutorials and notebooks)

https://sites.google.com/view/recogymchallenge/home
https://github.com/criteo-research/reco-gym


Difference-of-Convex Algorithm applied to adversarial
robustness verification

Ismaila Seck 1,2,3 Gaelle Loosli 3,4

Stephane Canu 2,3 Yi-Shuai Niu 5

1Normandie Univ, INSA Rouen 2UNIROUEN, UNIHAVRE, LITIS 3UCA, LIMOS

4PobRun 5School of Mathematical Sciences, Shanghai Jiao Tong University

October 2, 2019



Adversarial examples

Figure 1: Illustration of the use of adversarial examples.
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Formulation as an optimization problem

x, y : original image and its class
x′ : adversarial image we are looking for
fk(.) : the k-th output of the network

min ‖x− x′‖
s.t. argmax

k=1,...,c
fk(x′) 6= y ,

x′ ∈ [0, 1]d .

(1)

shortname (shortinst) DCA October 2, 2019 2 / 4



Formulation as an optimization problem

x, y : original image and its class
x′ : adversarial image we are looking for
fk(.) : the k-th output of the network

min ‖x− x′‖
s.t. argmax

k=1,...,c
fk(x′) 6= y ,

x′ ∈ [0, 1]d .

(1)

shortname (shortinst) DCA October 2, 2019 2 / 4



Linearization of the argmax constraint

(1) ⇐⇒



min ‖x− x′‖
s.t. m ≤ fk(x′) + (1− ak)Mm, k = 1, . . . , c

m ≥ fk(x′), k = 1, . . . , c
c∑

k=1

ak = 1,

ay = 0,
m ∈ R,
a ∈ {0, 1}c ,
x′ ∈ [0, 1]d .

(2)
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Using DC to get rid of the binary variables



min ‖x− x′‖+
c∑

k=1

ak(1− ak)

s.t. m ≤ fk(x′) + (1− ak)Mm, k = 1, . . . , c
m ≥ fk(x′), k = 1, . . . , c
c∑

k=1

ak = 1,

ay = 0,
m ∈ R,
a ∈ [0, 1]c ,
x′ ∈ [0, 1]d .

(3)
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The End

Thanks for your attention !



Functional Isolation Forest

Guillaume Staerman*

Joint work with

Pavlo Mozharovskyi*, Stéphan Clémençon* and Florence D’Alché-Buc*

MLITRW, October 02, 2019

*LTCI, Telecom Paris, Institut Polytechnique de Paris.



Functional Data Framework

• Let X = {X (t) ∈ Rd , t ∈ [0, 1]} be a random variable that takes its

values in a (multivariate) functional space.

• In practice, we only have access to the realization of X at a finite

number of arguments/times, x = {x(t1), . . . , x(tp)} such that

0 ≤ t1 < · · · < tp ≤ 1.

• The first step: reconstruct functional object from partial

observations (time-series) with interpolation or basis decomposition.

0 5 10 15 20

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 1: Example of a functional dataset. Red stars indicate the observed

values (at the same equispaced time points), while the blue curves are obtained

by linearly interpolating them.
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Anomaly detection and functional data

Shape anomalies Shift anomalies

0.0 0.2 0.4 0.6 0.8 1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Isolated anomalies

0 20 40 60 80 100 120 140

2

0

2

4

6

8

10

12

2



Functional Isolation Forest

• This ensemble learning algorithm builds a collection of functional

isolation trees.

• Functional isolation tree : binary tree based on a recursive and

randomized tree-structured partitioning procedure.

• General principle:

1. Select a function d into a dictionary D.

2. Compute the dot products 〈·, ·〉 between d and the data.

3. Draw randomly a treshold κ on the real line.

4. Split the space by a perpendicular hyperplan along d going through

κ.

5. Repeat this procedure until every data are isolated!!!

• The trick : an anomaly should be isolated faster than normal data. 3



Anomaly score prediction

• One may then define the piecewise constant function hτ : X → N
by: ∀x ∈ X ,

hτ (x) = j if and only if x ∈ Cj,k and Cj,k is associated to a terminal node.

• Considering a collection of F-itree T1, . . . , TN , the scoring function

is defined by

sn(x) = 2− 1
Nc(n)

∑N
l=1 hτl (x),

4



Thank you !

All codes are available at https://github.com/Gstaerman/FIF

5

https://github.com/Gstaerman/FIF
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