Convergence and Dynamical Behavior of the ADAM Algorithm for Non Convex Stochastic Optimization

Anas Barakat, Pascal Bianchi

LTCI, Télécom Paris, Institut polytechnique de Paris

Machine Learning in the Real World, October 2nd 2019

Optimization in Deep Learning

Figure 1: Visualization of a loss landscape (VGG-56 on CIFAR-10) https://www.cs.umd.edu/ tomg/projects/landscapes/

Li et al., Visualizing the Loss Landscape of Neural Nets, NeurIPS 2018

Problem statement

Problem

$$
\min _{x} F(x):=\mathbb{E}(f(x, \xi)) \quad \text { w.r.t. } \quad x \in \mathbb{R}^{d}
$$

Assumptions

- $f(., \xi)$: nonconvex differentiable function
- regularity assumptions on f (smoothness, coercivity of F, etc.)
- $\left(\xi_{n}: n \geq 1\right)$: iid copies of r.v ξ revealed online

ADAM : an adaptive algorithm

[Kingma and Ba, 2015]

- Regime : constant step size $\gamma>0$.

Algorithm 1 ADAM $(\gamma, \alpha, \beta, \varepsilon)$

$$
\text { 1: } x_{0} \in \mathbb{R}^{d}, m_{0}=0, v_{0}=0, \gamma>0, \varepsilon>0,(\alpha, \beta) \in[0,1)^{2} .
$$

2: for $n \geq 1$ do
3: $\quad m_{n}=\alpha m_{n-1}+(1-\alpha) \nabla f\left(x_{n-1}, \xi_{n}\right)$
4: $\quad v_{n}=\beta v_{n-1}+(1-\beta) \nabla f\left(x_{n-1}, \xi_{n}\right)^{2}$
5: $\quad \hat{m}_{n}=\frac{m_{n}}{1-\alpha^{n}}$
6: $\quad \hat{v}_{n}=\frac{v_{n}}{1-\beta^{n}}$
7: $\quad x_{n}=x_{n-1}-\frac{\gamma}{\varepsilon+\sqrt{\hat{v}_{n}}} \hat{m}_{n}$

$$
x_{n}=x_{n-1}-\gamma \nabla f\left(x_{n-1}, \xi_{n}\right)(\text { SGD for comparison })
$$

8: end for

From Discrete to Continuous Time

The ODE Method [Ljung, 1977, Kushner and Yin, 2003]

Continuous Time System

similar approach to [Su, Boyd and Candès, 2016]
Non autonomous ODE
If $z(t)=(x(t), m(t), v(t))$,

$$
\begin{equation*}
\dot{z}(t)=h(t, z(t)) \tag{ODE}
\end{equation*}
$$

Theorem (Convergence)

$$
\lim _{t \rightarrow \infty} \mathrm{~d}\left(x(t), \nabla F^{-1}(\{0\})\right)=0
$$

$$
c_{1}(t) \ddot{x}(t)+c_{2}(t) \dot{x}(t)+\nabla F(x(t))=0,
$$

- 2nd vs 1st order: acceleration (even if oscillations).
- Escaping local traps (saddle points)

Long run convergence of the ADAM iterates

- No a.s convergence : regime $n \rightarrow \infty$ then $\gamma \rightarrow 0$

Theorem (ergodic convergence of the ADAM iterates)

Let $x_{0} \in \mathbb{R}^{d}, \gamma>0,\left(z_{n}^{\gamma}: n \in \mathbb{N}\right), z_{0}^{\gamma}=\left(x_{0}, 0,0\right)$. Under the same assumptions and:

- Stability assumption: $\sup _{n, \gamma} \mathbb{E}\left\|z_{n}^{\gamma}\right\|<\infty$.

Then, for all $\delta>0$,

$$
\begin{equation*}
\lim _{\gamma \downarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \mathbb{P}\left(\mathrm{~d}\left(x_{n}^{\gamma}, \nabla F^{-1}(\{0\})\right)>\delta\right)=0 . \tag{1}
\end{equation*}
$$

Thank you for your attention

For more details: submitted article, available on arXiv.
AB, P. Bianchi. Convergence and Dynamical Behavior of the ADAM Algorithm for Non Convex Stochastic Optimization.

Utility/Privacy Trade-off through the lens of Optimal Transport

Etienne Boursier ${ }^{1}$ Vianney Perchet ${ }^{2,3}$

${ }^{1}$ ENS Paris-Saclay, CMLA
${ }^{2}$ Criteo AI Lab, Paris
${ }^{3}$ ENSAE Paris
MLITRW '19, Criteo Paris

An economic motivation

Online repeated auctions

Ad slot valued v. Bid $p \Longrightarrow$ auctioneer infers v. Auctioneer's revenue \nearrow while bidder's utility \searrow when v public.

Online advertisement auction system
Bidder's goal: short term utility and hide value distribution μ_{n}

Toy example

Player: minimizes utility loss

$$
\min _{x \in \mathcal{X} \subset \mathbb{R}^{d}} x^{\top} y_{k}
$$

y_{k} depends on private type $k \in\{1, \ldots, K\}$ with prior $p_{0} \in \Delta_{K}$. Adversary: observes x and infers k

Program in previous literature ${ }^{1}$:

$$
\begin{array}{r}
\min _{\mu_{1}, \ldots, \mu_{K}} \sum_{k=1}^{K} p_{0}(k) \mathbb{E}_{x \sim \mu_{k}}\left[x^{\top} y_{k}\right] \\
\text { such that } \mathbb{E}\left[K L\left(p_{x}, p_{0}\right)\right] \leq \varepsilon
\end{array}
$$

${ }^{1}$ Eilat, R., Eliaz, K., and Mu, X. (2019). Optimal privacy-constrained mechanisms

General formulation of the problem

Our general program:
$\inf _{\substack{\gamma \in \mathcal{P}(\mathcal{X} \times \mathcal{Y}) \\ \pi_{2} \# \gamma=p_{0}}} \int_{\mathcal{X} \times \mathcal{Y}}\left(c(x, y)+\lambda D\left(p_{x}, p_{0}\right)\right) \mathrm{d} \gamma(x, y) \quad(\mathrm{P}-\mathrm{OPT})$

- type $y \sim p_{0} \in \mathcal{P}(\mathcal{Y})$
- $\pi_{2} \# \gamma(A)=\gamma(\mathcal{X} \times A)$
- $c=$ utility loss $; D=$ privacy loss (e.g. KL)

Theoretical results

Theorem (Convexity)

If D is an f-divergence, then (P-OPT) is convex in γ.
\rightarrow (P-OPT) easy for finite \mathcal{X} and \mathcal{Y}.
Theorem (Finite prior support)
If $\left|\operatorname{supp}\left(p_{0}\right)\right|=K$, for all $\varepsilon>0$, we can look for a solution of (P-OPT) with support of size $K(K+2)$.
\rightarrow finite dimension $)_{\text {but not jointly convex })} ;$

Sinkhorn divergence minimization

Definition (Sinkhorn divergence)

$$
\mathrm{OT}_{c, \lambda}(\mu, \nu)=\inf _{\gamma \in \Pi(\mu, \nu)} \int c \mathrm{~d} \gamma+\lambda \int \log \left(\frac{\mathrm{d} \gamma}{\mathrm{~d} \mu \mathrm{~d} \nu}\right) \mathrm{d} \gamma
$$

- entropic regularization \Longrightarrow fast OT distances approximation ${ }^{2}$

If $D=K L$, ($P-O P T$) equivalent to

$$
\inf _{\mu \in \mathcal{P}(\mathcal{X})} \mathrm{OT}_{c, \lambda}\left(\mu, p_{0}\right) .
$$

${ }^{2}$ Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport

Recap

- utility-privacy trade-off motivated by economic mechanisms
- general regularized problem
- convexity + finiteness under mild assumptions
- benefit from Sinkhorn divergence
- find our simulations in the paper

Slides, code and paper at eboursier.github.io

Thank you!

Bayesian computation and machine learning

Nicolas Chopin (ENSAE, IPP)

PAC-Bayes

Uses as an estimator the expectation of pseudo-posterior:

$$
p(x \mid y) \propto p(x) \exp \{-\gamma R(x, y)\}
$$

where $R(x, y)$ is the empirical risk, for parameter x and data y.

How to compute this expectation?

1. Fast variational approximation: but can you we obtain the same non-asymptotic bounds? See Alquier, Ridgway and C. (2016, JMLR).
2. Monte Carlo methods: isn't that slow? not if you do it right, e.g. Sequential Monte Carlo (Ridgway et al, NIPS, 2014).

Other applications of Bayesian computation

1. Probabilistic machine learning.
2. Sequential learning: use Sequential Monte Carlo?
3. Non-convex optimisation

Improved Algorithms for Conservative Exploration in Bandits

Evrard Garcelon, Mohammad Ghavamzadeh, Alessandro Lazaric and Matteo Pirotta

Facebook Al Research

Problem: How to learn an optimal policy without sacrificing much revenue?

(aka: how to perform exploration in a conservative way?)

Conservative Condition

Should hold uniformly
in time

Mean revenue of the learning algorithm

Previous Work:

\square Theoretically optimal algorithms for conservative exploration (CUCB) (Wu et al. 2016, Kazerouni et al. 2017)
\rightarrow Improved empirical
performance in multi-armed and linear bandit (CUCB2)
\rightarrow Novel relaxed conservative condition

CUCB (orevious algorithm)

- Two phase algorithm
a. Computes optimistic arm
b. Checks a lower bound on the total revenue
=> impacts empirical performance!

CUCB2 (our algorithm)

- Computes set of safe arms
- Plays the optimistic arm among safe arms
=> same regret but better performance!

Jester Jokes Dataset (Godbegeg eata 2001)

- Cold start problem
- Linear features

A PAC-Bayes perspective on binary-activated deep neural networks

Benjamin Guedj https://bguedj.github.io

MLRW \#5, Criteo October 2, 2019

The
AlanTuring Institute

Context

Context

- Learning is to be able to generalise!

Context

■ Learning is to be able to generalise!
■ PAC-Bayes has been successfully used to analyse and understand generalisation abilities of machine learning algorithms.

Context

■ Learning is to be able to generalise!
■ PAC-Bayes has been successfully used to analyse and understand generalisation abilities of machine learning algorithms.

- 囚 G., "A Primer on PAC-Bayesian Learning", invited for publication in the Proceedings of the French Mathematical Society, https://arxiv.org/abs/1901.05353
■ Q. \& Shawe-Taylor, "A Primer on PAC-Bayesian Learning", ICML 2019 tutorial https://bguedj.github.io/icml2019/index.html

Context

■ Learning is to be able to generalise!
■ PAC-Bayes has been successfully used to analyse and understand generalisation abilities of machine learning algorithms.

- 囚 G., "A Primer on PAC-Bayesian Learning", invited for publication in the Proceedings of the French Mathematical Society, https://arxiv.org/abs/1901.05353
■ Q. \& Shawe-Taylor, "A Primer on PAC-Bayesian Learning", ICML 2019 tutorial https://bguedj.github.io/icml2019/index.html
- Most PAC-Bayes generalisation bounds are computable tight upper bounds on the population error, i.e. an estimate of the error on any unseen future data.

Context

■ Learning is to be able to generalise!
■ PAC-Bayes has been successfully used to analyse and understand generalisation abilities of machine learning algorithms.

- 囚 G., "A Primer on PAC-Bayesian Learning", invited for publication in the Proceedings of the French Mathematical Society, https://arxiv.org/abs/1901.05353
■ Q G. \& Shawe-Taylor, "A Primer on PAC-Bayesian Learning", ICML 2019 tutorial https://bguedj.github.io/icml2019/index.html
- Most PAC-Bayes generalisation bounds are computable tight upper bounds on the population error, i.e. an estimate of the error on any unseen future data.

■ PAC-Bayes bounds hold for any distribution on hypotheses. As such, they are a principled way to invent new learning algorithms.

This spotlight

囚 G. Letarte, P. Germain, B. G., F. Laviolette. Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks, to appear in NeurIPS 2019
https://arxiv.org/abs/1905.10259

This spotlight

A G. Letarte, P. Germain, B. G., F. Laviolette. Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks, to appear in NeurIPS 2019
https://arxiv.org/abs/1905.10259
We focused on DNN with a binary activation function: surprisingly effective while preserving low computing and memory footprints.

This spotlight

A G. Letarte, P. Germain, B. G., F. Laviolette. Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks, to appear in NeurIPS 2019
https://arxiv.org/abs/1905.10259
We focused on DNN with a binary activation function: surprisingly effective while preserving low computing and memory footprints.

■ Very few meaningful generalisation bounds for DNN

This spotlight

A G. Letarte, P. Germain, B. G., F. Laviolette. Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks, to appear in NeurIPS 2019
https://arxiv.org/abs/1905.10259
We focused on DNN with a binary activation function: surprisingly effective while preserving low computing and memory footprints.

- Very few meaningful generalisation bounds for DNN Breakthrough: SOTA PAC-Bayes generalisation bound

This spotlight

A G. Letarte, P. Germain, B. G., F. Laviolette. Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks, to appear in NeurIPS 2019
https://arxiv.org/abs/1905.10259
We focused on DNN with a binary activation function: surprisingly effective while preserving low computing and memory footprints.

- Very few meaningful generalisation bounds for DNN Breakthrough: SOTA PAC-Bayes generalisation bound
■ How to train a network with non-differentiable activation function?

This spotlight

囚
G. Letarte, P. Germain, B. G., F. Laviolette. Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks, to appear in NeurIPS 2019
https://arxiv.org/abs/1905.10259
We focused on DNN with a binary activation function: surprisingly effective while preserving low computing and memory footprints.

■ Very few meaningful generalisation bounds for DNN Breakthrough: SOTA PAC-Bayes generalisation bound
■ How to train a network with non-differentiable activation function? Breakthrough: training by minimising the bound (SGD + tricks)

This spotlight

囚
G. Letarte, P. Germain, B. G., F. Laviolette. Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks, to appear in NeurIPS 2019
https://arxiv.org/abs/1905.10259
We focused on DNN with a binary activation function: surprisingly effective while preserving low computing and memory footprints.

- Very few meaningful generalisation bounds for DNN Breakthrough: SOTA PAC-Bayes generalisation bound
■ How to train a network with non-differentiable activation function?
Breakthrough: training by minimising the bound (SGD + tricks)
■ Who cares? Generalisation bounds are a theoretician's concern!

This spotlight

A G. Letarte, P. Germain, B. G., F. Laviolette. Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks, to appear in NeurIPS 2019
https://arxiv.org/abs/1905.10259
We focused on DNN with a binary activation function: surprisingly effective while preserving low computing and memory footprints.

- Very few meaningful generalisation bounds for DNN Breakthrough: SOTA PAC-Bayes generalisation bound
■ How to train a network with non-differentiable activation function? Breakthrough: training by minimising the bound (SGD + tricks)
- Who cares? Generalisation bounds are a theoretician's concern! Breakthrough: Our bound is computable and serves as a safety check to practitioners

Binary Activated Neural Networks

■ $\mathbf{x} \in \mathbb{R}^{d_{0}}, y \in\{-1,1\}$
Architecture:

- L fully connected layers
- d_{k} denotes the number of neurons of the $k^{\text {th }}$ layer
■ $\operatorname{sgn}(a)=1$ if $a>0$ and $\operatorname{sgn}(a)=-1$ otherwise

Parameters:

■ $\mathbf{W}_{k} \in \mathbb{R}^{d_{k} \times d_{k-1}}$ denotes the weight matrices.
■ $\theta=\operatorname{vec}\left(\left\{\mathbf{W}_{k}\right\}_{k=1}^{L}\right) \in \mathbb{R}^{D}$

Prediction

$$
f_{\theta}(\mathbf{x})=\operatorname{sgn}\left(\mathbf{w}_{L} \operatorname{sgn}\left(\mathbf{W}_{L-1} \operatorname{sgn}\left(\ldots \operatorname{sgn}\left(\mathbf{W}_{1} \mathbf{x}\right)\right)\right)\right)
$$

Generalisation bound

Generalisation bound

For an arbitrary number of layers and neurons, with probability at least $1-\delta$, for any $\theta \in \mathbb{R}^{D}$

$$
\begin{aligned}
& \quad R_{\text {out }}\left(F_{\theta}\right) \leqslant \\
& \inf _{C>0}\left\{\frac{1}{1-e^{-C}}\left(1-\exp \left(-C R_{\text {in }}\left(F_{\theta}\right)-\frac{\frac{1}{2}\left\|\theta-\theta_{0}\right\|^{2}+\log \frac{2 \sqrt{m}}{\delta}}{m}\right)\right)\right\}
\end{aligned}
$$

where

$$
R_{\mathrm{in}}\left(F_{\theta}\right)=\underset{\theta^{\prime} \sim Q_{\theta}}{\mathrm{E}} R_{\mathrm{in}}\left(f_{\theta^{\prime}}\right)=\frac{1}{m} \sum_{i=1}^{m}\left[\frac{1}{2}-\frac{1}{2} y_{i} F_{\theta}\left(\mathbf{x}_{i}\right)\right] .
$$

(A selection of) numerical results

Model name	Cost function	Train split	Valid split	Model selection	Prior
MLP-tanh	linear loss, L2 regularized	80%	20%	valid linear loss	-
PBGNet $_{\ell}$	linear loss, L2 regularized	80%	20%	valid linear loss	random init
PBGNet	PAC-Bayes bound	100%	-	PAC-Bayes bound	random init
PBGNetpre					
- pretrain	linear loss (20 epochs)	50%	-		random init
- final	PAC-Bayes bound	50%	-	PAC-Bayes bound	pretrain

Dataset	MLP-tanh		$\underline{\text { PBGNet }_{\ell}}$		PBGNet			PBGNetpre		
	E_{S}	E_{T}	E_{S}	E_{T}	E_{S}	E_{T}	Bound	E_{S}	E_{T}	Bound
ads	0.021	0.037	0.018	0.032	0.024	0.038	0.283	0.034	0.033	0.058
adult	0.128	0.149	0.136	0.148	0.158	0.154	0.227	0.153	0.151	0.165
mnist17	0.003	0.004	0.008	0.005	0.007	0.009	0.067	0.003	0.005	0.009
mnist49	0.002	0.013	0.003	0.018	0.034	0.039	0.153	0.018	0.021	0.030
mnist56	0.002	0.009	0.002	0.009	0.022	0.026	0.103	0.008	0.008	0.017
mnistLH	0.004	0.017	0.005	0.019	0.071	0.073	0.186	0.026	0.026	0.033

Thanks!

We have several PhD / postdoc / visiting researcher positions available in my group, based in London and affiliated with Inria and UCL.

Feel free to reach out! https://bguedj.github.io

Positive solutions for Large Random Linear Systems

Jamal Najim
najim@univ-mlv.fr
CNRS \& Université Paris Est
joint work with Pierre Bizeul

Machine Learning in the real world - Criteo Labs - july 2019

A Large Random Linear System

We are interested in the equation

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\alpha \sqrt{N}} \boldsymbol{x}
$$

where

A Large Random Linear System

We are interested in the equation

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x}
$$

where

- \boldsymbol{x} is a $N \times 1$ unknown vector,
- $\mathbf{1}$ is a $N \times 1$ vector of ones,
- A is a $N \times N$ random matrix with i.i.d. entries $\mathcal{N}(0,1)$,
- $\boldsymbol{\alpha}$ is a positive scalar parameter to be tuned.

A Large Random Linear System

We are interested in the equation

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x}
$$

where

- \boldsymbol{x} is a $N \times 1$ unknown vector,
- $\mathbf{1}$ is a $N \times 1$ vector of ones,
- A is a $N \times N$ random matrix with i.i.d. entries $\mathcal{N}(0,1)$,
- $\boldsymbol{\alpha}$ is a positive scalar parameter to be tuned.

Questions

- Does this system admit a solution $\boldsymbol{x}=\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}$?

A Large Random Linear System

We are interested in the equation

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x}
$$

where

- \boldsymbol{x} is a $N \times 1$ unknown vector,
- $\mathbf{1}$ is a $N \times 1$ vector of ones,
- A is a $N \times N$ random matrix with i.i.d. entries $\mathcal{N}(0,1)$,
- $\boldsymbol{\alpha}$ is a positive scalar parameter to be tuned.

Questions

- Does this system admit a solution $\boldsymbol{x}=\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}$?
- Conditions to get a solution \boldsymbol{x} with positive components?

A Large Random Linear System

We are interested in the equation

$$
\boldsymbol{x}=\mathbf{1}+\frac{A}{\boldsymbol{\alpha} \sqrt{N}} \boldsymbol{x}
$$

where

- \boldsymbol{x} is a $N \times 1$ unknown vector,
- $\mathbf{1}$ is a $N \times 1$ vector of ones,
- A is a $N \times N$ random matrix with i.i.d. entries $\mathcal{N}(0,1)$,
- $\boldsymbol{\alpha}$ is a positive scalar parameter to be tuned.

Questions

- Does this system admit a solution $\boldsymbol{x}=\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}$?
- Conditions to get a solution \boldsymbol{x} with positive components?

Motivation

- Feasibility and stability in ecological networks.

Confinement of the spectrum of $\frac{A}{\sqrt{N}}$

Confinement of the spectrum of $\frac{A}{\sqrt{N}}$

Non-hermitian matrix eigenvalues, $\mathrm{N}=\mathbf{2 0}$

Figure: Distribution of A_{N} / \sqrt{N} 's eigenvalues

Confinement of the spectrum of $\frac{A}{\sqrt{N}}$

Non-hermitian matrix eigenvalues, $\mathrm{N}=50$

Figure: Distribution of A_{N} / \sqrt{N} 's eigenvalues

Confinement of the spectrum of $\frac{A}{\sqrt{N}}$

Non-hermitian matrix eigenvalues, $\mathrm{N}=100$

Figure: Distribution of A_{N} / \sqrt{N} 's eigenvalues

Confinement of the spectrum of $\frac{A}{\sqrt{N}}$

Non-hermitian matrix eigenvalues, $\mathbf{N}=\mathbf{2 0 0}$

Figure: Distribution of A_{N} / \sqrt{N} 's eigenvalues

Confinement of the spectrum of $\frac{A}{\sqrt{N}}$

Non-hermitian matrix eigenvalues, $\mathrm{N}=1000$

Figure: Distribution of A_{N} / \sqrt{N} 's eigenvalues

Confinement of the spectrum of $\frac{A}{\sqrt{N}}$

Non-hermitian matrix eigenvalues, $\mathrm{N}=1000$

Figure: The circular law (in red)
Theorem: The Circular Law (Ginibre, Metha, Girko, Tao \& Vu, etc.)
The spectrum of $\frac{A}{\sqrt{N}}$ converges to the uniform probability on the disc

Existence of a solution .. with no positive components

- From the spectrum confinement property,

$$
\boldsymbol{x}=\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1} \quad \text { exists for } \boldsymbol{\alpha}>\mathbf{1}
$$

Existence of a solution .. with no positive components

- From the spectrum confinement property,

$$
\boldsymbol{x}=\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1} \text { exists for } \boldsymbol{\alpha}>\mathbf{1}
$$

- but

$$
x_{k} \sim \mathcal{N}\left(1, \frac{1}{\boldsymbol{\alpha}^{2}-1}\right) \quad \text { i.i.d. } \quad \text { as } N \rightarrow \infty
$$

Existence of a solution .. with no positive components

- From the spectrum confinement property,

$$
\boldsymbol{x}=\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1} \quad \text { exists for } \boldsymbol{\alpha}>\mathbf{1}
$$

- but

$$
x_{k} \sim \mathcal{N}\left(1, \frac{1}{\boldsymbol{\alpha}^{2}-1}\right) \quad \text { i.i.d. } \quad \text { as } N \rightarrow \infty
$$

- As a consequence

$$
\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \quad \sim \mathbb{P}\left\{x_{k}>0\right\}^{N} \xrightarrow[N \rightarrow \infty]{ } 0
$$

\Rightarrow no positive solutions

Positivity of the solution

Consider now the case $\alpha=\boldsymbol{\alpha}_{N} \xrightarrow[N \rightarrow \infty]{ } \infty$

Positivity of the solution

Consider now the case $\alpha=\boldsymbol{\alpha}_{N} \xrightarrow[N \rightarrow \infty]{ } \infty$
Theorem (phase transition, Bizeul-N. '19)

- If

$$
\boldsymbol{\alpha}_{N} \leq_{\delta} \sqrt{2 \log (N)} \quad \Leftrightarrow \quad \alpha_{N} \leq(1-\delta) \sqrt{2 \log (N)}
$$

then

$$
\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \xrightarrow[N \rightarrow \infty]{ } 0 \quad \Rightarrow \quad \text { no positive solutions. }
$$

Positivity of the solution

Consider now the case $\boldsymbol{\alpha}=\boldsymbol{\alpha}_{N} \xrightarrow[N \rightarrow \infty]{ } \infty$
Theorem (phase transition, Bizeul-N. '19)

- If

$$
\boldsymbol{\alpha}_{N} \leq_{\delta} \sqrt{2 \log (N)} \quad \Leftrightarrow \quad \alpha_{N} \leq(1-\delta) \sqrt{2 \log (N)}
$$

then

$$
\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{ } 0 \quad \Rightarrow \quad \text { no positive solutions. }
$$

- If

$$
\boldsymbol{\alpha}_{N} \geq_{\delta} \sqrt{2 \log (N)} \quad \Leftrightarrow \quad \alpha_{N} \geq(1+\delta) \sqrt{2 \log (N)}
$$

then

$$
\mathbb{P}\left\{\inf _{k \in[N]} x_{k}>0\right\} \underset{N \rightarrow \infty}{ } 1 \quad \Rightarrow \quad \text { positive solutions. }
$$

Phase transition (gaussian case)

- We plot the frequency (over 500 trials) of positive solutions for the linear system

$$
\boldsymbol{x}=\mathbf{1}+\frac{1}{\kappa \sqrt{\log (N)}} \frac{A}{\sqrt{N}} \boldsymbol{x}
$$

as a function of the normalization parameter κ.

- As expected, we observe threshold phenomenon around the critical value $\kappa=\sqrt{2}$.

A heuristics for the critical scaling

1. Unfold the resolvent and write

$$
x_{k}=e_{k}^{*}\left(I-\frac{A}{\alpha \sqrt{N}}\right)^{-1} \mathbf{1}
$$

A heuristics for the critical scaling

1. Unfold the resolvent and write

$$
x_{k}=\boldsymbol{e}_{k}^{*}\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}=1+\frac{Z_{k}}{\boldsymbol{\alpha}}+\frac{R_{k}}{\boldsymbol{\alpha}^{2}} \text { (remainder term) }
$$

A heuristics for the critical scaling

1. Unfold the resolvent and write

$$
x_{k}=\boldsymbol{e}_{k}^{*}\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}=1+\frac{Z_{k}}{\boldsymbol{\alpha}}+\frac{R_{k}}{\boldsymbol{\alpha}^{2}} \text { (remainder term) }
$$

2. Notice that

$$
Z_{k} \sim \mathcal{N}(0,1) \quad \text { i.i.d. } \quad \text { and } \quad \min _{k \in[N]} Z_{k} \sim-\sqrt{2 \log (N)}
$$

by extreme value theory.

A heuristics for the critical scaling

1. Unfold the resolvent and write

$$
x_{k}=\boldsymbol{e}_{k}^{*}\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}=1+\frac{Z_{k}}{\boldsymbol{\alpha}}+\frac{R_{k}}{\boldsymbol{\alpha}^{2}} \text { (remainder term) }
$$

2. Notice that

$$
Z_{k} \sim \mathcal{N}(0,1) \quad \text { i.i.d. } \quad \text { and } \quad \min _{k \in[N]} Z_{k} \sim-\sqrt{2 \log (N)}
$$

by extreme value theory.

3. Conclude

$$
\min _{k \in[N]} x_{k} \approx 1+\frac{\min _{k \in[N]} Z_{k}}{\boldsymbol{\alpha}}+\cdots
$$

A heuristics for the critical scaling

1. Unfold the resolvent and write

$$
x_{k}=\boldsymbol{e}_{k}^{*}\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}=1+\frac{Z_{k}}{\boldsymbol{\alpha}}+\frac{R_{k}}{\boldsymbol{\alpha}^{2}} \text { (remainder term) }
$$

2. Notice that

$$
Z_{k} \sim \mathcal{N}(0,1) \quad \text { i.i.d. } \quad \text { and } \quad \min _{k \in[N]} Z_{k} \sim-\sqrt{2 \log (N)}
$$

by extreme value theory.

3. Conclude

$$
\min _{k \in[N]} x_{k} \approx 1+\frac{\min _{k \in[N]} Z_{k}}{\boldsymbol{\alpha}}+\cdots \approx 1-\frac{\sqrt{2 \log (N)}}{\boldsymbol{\alpha}}
$$

A heuristics for the critical scaling

1. Unfold the resolvent and write

$$
x_{k}=\boldsymbol{e}_{k}^{*}\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}=1+\frac{Z_{k}}{\boldsymbol{\alpha}}+\frac{R_{k}}{\boldsymbol{\alpha}^{2}} \text { (remainder term) }
$$

2. Notice that

$$
Z_{k} \sim \mathcal{N}(0,1) \quad \text { i.i.d. } \quad \text { and } \quad \min _{k \in[N]} Z_{k} \sim-\sqrt{2 \log (N)}
$$

by extreme value theory.
3. Conclude

$$
\min _{k \in[N]} x_{k} \approx 1+\frac{\min _{k \in[N]} Z_{k}}{\boldsymbol{\alpha}}+\cdots \approx 1-\frac{\sqrt{2 \log (N)}}{\boldsymbol{\alpha}}
$$

4. The key control of the remainder term R_{k} can be proved via gaussian concentration.

$$
\begin{array}{|c|}
\hline \frac{\max _{k \in[N]} R_{k}}{\alpha \sqrt{2 \log (N)}} \xrightarrow[N \rightarrow \infty]{\mathcal{P}} 0
\end{array} \quad \text { and } \quad \frac{\min _{k \in[N]} R_{k}}{\alpha \sqrt{2 \log (N)}} \xrightarrow[N \rightarrow \infty]{\mathcal{P}} 0
$$

A heuristics for the critical scaling

1. Unfold the resolvent and write

$$
x_{k}=\boldsymbol{e}_{k}^{*}\left(I-\frac{A}{\boldsymbol{\alpha} \sqrt{N}}\right)^{-1} \mathbf{1}=1+\frac{Z_{k}}{\boldsymbol{\alpha}}+\frac{R_{k}}{\boldsymbol{\alpha}^{2}} \text { (remainder term) }
$$

2. Notice that

$$
Z_{k} \sim \mathcal{N}(0,1) \quad \text { i.i.d. } \quad \text { and } \quad \min _{k \in[N]} Z_{k} \sim-\sqrt{2 \log (N)}
$$

by extreme value theory.
3. Conclude

$$
\min _{k \in[N]} x_{k} \approx 1+\frac{\min _{k \in[N]} Z_{k}}{\boldsymbol{\alpha}}+\cdots \approx 1-\frac{\sqrt{2 \log (N)}}{\boldsymbol{\alpha}}
$$

4. The key control of the remainder term R_{k} can be proved via gaussian concentration.

$$
\frac{\max _{k \in[N]} R_{k}}{\alpha \sqrt{2 \log (N)}} \xrightarrow[N \rightarrow \infty]{\mathcal{P}} 0 \quad \text { and } \quad \frac{\min _{k \in[N]} R_{k}}{\alpha \sqrt{2 \log (N)}} \frac{\mathcal{P}}{N \rightarrow \infty} 0 .
$$

Thank you for your attention!

Light ©n

Bringing light to AI

lacopo Pol - Lead Machine Learning Engineer iacopo@lighton io

Microsoft boss: World needs more computing power

By Joe Miller
BBC News, Davos

Thom Quinn
@tpq_
Is deep learning right for you? Now in 1 easy step:
(Q) Do you have more than 10,000 samples?
> If no -- sorry, you don't have enough samples
> If yes -- sorry, you don't have enough compute

INCREASING DEMAND OF COMPUTE Light*n

Eliot Andres

@EliotAndres
We just received the new iPhone 11! Wondering how it improved regarding machine learning? We put together a small benchmark. A thread

ECOLOGICAL IMPACT OF AI

Andrej Karpathy

@karpathy
"Hybrid Optical-Electronic Convolutional Neural Networks" computationalimaging.org /publications/h ... incredibly interesting work - develops a hybrid optoelectronic CNN with an optical CONV1 layer that operates at zero power consumption (with rest of the forward pass in electronics (for now))

ECOLOGICAL IMPACT OF AI

Green AI

Roy Schwartz, Jesse Dodge, Noah A. Smith, Oren Etzioni
(Submitted on 22 Jul 2019 (v1), last revised 13 Aug 2019 (this version, v3))

The role of artificial intelligence in achieving the Sustainable Development Goals

Ricardo Vinuesa, Hossein Azizpour, Iolanda Leite, Madeline Balaam, Virginia Dignum, Sami Domisch, Anna Felländer, Simone Langhans, Max Tegmark, Francesco Fuso Nerini
(Submitted on 30 Apr 2019)

OPTICAL PROCESSING UNIT

$$
\begin{aligned}
& \mathbf{y}=|\mathbf{R x}|^{2} \quad R_{i j} \in \mathbb{C} \\
& \operatorname{Re}\left\{R_{i j}\right\} \sim \mathcal{N}\left(0, \sigma^{2}\right) \\
& \operatorname{Im}\left\{R_{i j}\right\} \sim \mathcal{N}\left(0, \sigma^{2}\right)
\end{aligned}
$$

1M input-1M output Speed: 2 kHz Power:30W

Random Features for Large-Scale Kernel Machines

Ali Rahimi
Intel Research Seattle
Seattle, WA 98105
ali.rahimi@intel.com

Benjamin Recht
Caltech IST
Pasadena, CA 91125
brecht@ist.caltech.edu

Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions

Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp

LIGHT SCATTERING

Credit: Emmanuel Bossy- Simsonic Software

Georges de la Tour - Saint Joseph charpentier

LIGHT SCATTERING

Credit: Emmanuel Bossy- Simsonic Software

Georges de la Tour - Saint Joseph charpentier

Credit: Emmanuel Bossy- Simsonic Software

Georges de la Tour - Saint Joseph charpentier

Model-Free Episodic Control

Charles Blundell
Google DeepMind
cblundell@google.com

Benigno Uria
Google DeepMind
buria@google.com

Alexander Pritzel
Google DeepMind
apritzel@google.com

Yazhe Li
Google DeepMind yazhe@google.com

Avraham Ruderman Google DeepMind aruderman@google.com

Joel Z Leibo Google DeepMind jzl@google.com

Jack Rae Google DeepMind jwrae@google.com

Daan Wierstra
Google DeepMind
wierstra@google.com

Demis Hassabis
Google DeepMind
demishassabis@google.com

REINFORCEMENT LEARNING

Credit: Martin Graive - Lighton

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING

No Training Required: Exploring Random Encoders for Sentence Classification

jwieting@cs.cmu.edu
Word OPU
embeddings mapping

Douwe Kiela

Facebook AI Research
dkiela@fb.com

Random	
projections	Pooling
(mean)	

Credit: François Boniface - Lighton

Shedding Light on the "Grand Débat"

LightOn
Apr 11 - 11 min read

NOT ONLY IMAGES

Climate change

Thank you!

The RecoGym Challenge

Design a Recommendation Agent that can collect the largest reward in the RecoGym environment!

Motivating Example

Product
view

Motivating Example

Product
view

Motivating Example

Product
view

Motivating Example

Product
view
Recommend

The RecoGym Challenge 100

RecoGym is recommendation simulator/game that allows us to:

- Simulate an A / B Test from the comfort of your own home, allowing evaluation that is currently impossible using static datasets
- You too can experience the excitement and joy of negative and neutral A / B Tests!
- Prize of 1000 euros (deadline 30 Nov)
- https://github.com/criteo-research/reco-gym

RecoGym Challange

Organized by Criteo - Current server time: Oct. 1, 2019, 8:22 p.m. UTC

Current	Next	End
Development	Final	Competition Ends
Oct. 1, 2019, midnight UTC	Nov. 30, 2019, midnight UTC	Dec. 1, 2019, midnight UTC

Learn the Details Phases Participate Results Public Submissions Forums \Rightarrow]

Development Final

Phase description
Development phase: create models and submit them or directly submit results on validation and/or test data; feed-back are provided on the validation set only.

Max submissions per day: 5
Max submissions total: 100

X

Click-Through Rate Results									
\#	User	Entries	Date of Last Entry	Team Name	CTR (q0.500), \%	CTR (q0.025), \%	CTR (q0.975), \%	Time (seconds) $\boldsymbol{\Delta}$	Detailed Results
1	intiihti	2	10/01/19		1.492 (1)	1.431 (1)	1.554 (1)	59.4 (2)	View
2	MartinB	2	10/01/19		1.434 (2)	1.374 (2)	1.495 (2)	55.2 (1)	View
3	Criteo	1	09/30/19	Criteo	1.403 (3)	1.344 (3)	1.464 (3)	375.6 (3)	View

Okay, what is the challenge?

Within the challenge, there are two tasks:

- RecoGym Challenge 100: Learning to recommend with 100 just actions. Prize 1000 euros. Live now!
- RecoGym Challenge 10 000: Learning to recommend in a larger action spaces. Prize 2000 euros. Stay Tuned

Important links

Follow us on Twitter: @RecoGym

RecoGym challenge website:
https://sites.google.com/view/recogymchallenge/home

RecoGym repo: https://github.com/criteo-research/reco-gym (the simulator, along with many tutorials and notebooks)

Difference-of-Convex Algorithm applied to adversarial robustness verification

$$
\begin{array}{cc}
\text { Ismaila Seck }{ }^{1,2,3} & \text { Gaelle Loosli }{ }^{3,4} \\
\text { Stephane Canu }{ }^{2,3} \quad \text { Yi-Shuai Niu }{ }^{5}
\end{array}
$$

${ }^{1}$ Normandie Univ, INSA Rouen ${ }^{2}$ UNIROUEN, UNIHAVRE, LITIS ${ }^{3}$ UCA, LIMOS
${ }^{4}$ PobRun ${ }^{5}$ School of Mathematical Sciences, Shanghai Jiao Tong University

October 2, 2019

Adversarial examples

Figure 1: Illustration of the use of adversarial examples.

Formulation as an optimization problem

- x, y : original image and its class
- \mathbf{x}^{\prime} : adversarial image we are looking for
- $f_{k}($.$) : the k$-th output of the network

$$
\left\{\begin{array}{cl}
\min & \left\|\mathbf{x}-\mathbf{x}^{\prime}\right\| \tag{1}\\
\text { s.t. } & \operatorname{argmax} f_{k}\left(\mathbf{x}^{\prime}\right) \neq y, \\
& k=1, \ldots, c \\
& \mathbf{x}^{\prime} \in[0,1]^{d}
\end{array}\right.
$$

Formulation as an optimization problem

- x, y : original image and its class
- \mathbf{x}^{\prime} : adversarial image we are looking for
- $f_{k}($.$) : the k$-th output of the network

$$
\left\{\begin{align*}
\min & \left\|\mathbf{x}-\mathbf{x}^{\prime}\right\| \tag{1}\\
\text { s.t. } & \text { argmaxf } f_{k}\left(\mathbf{x}^{\prime}\right) \neq y, \\
& \mathbf{x}^{\prime} \in[0,1]^{d}
\end{align*}\right.
$$

Linearization of the argmax constraint

$$
(1) \Longleftrightarrow\left\{\begin{array}{lll}
\min & \left\|\mathbf{x}-\mathbf{x}^{\prime}\right\| & \\
\text { s.t. } & m \leq f_{k}\left(\mathbf{x}^{\prime}\right)+\left(1-\mathrm{a}_{k}\right) M_{m}, & k=1, \ldots, c \tag{2}\\
& m \geq f_{k}\left(\mathbf{x}^{\prime}\right), & \\
& \sum_{c} \mathrm{a}_{k}=1, & \\
& \begin{array}{l}
k=1, \ldots, c \\
\mathrm{a}_{y}=0, \\
\\
\\
m \in \mathbb{R}, \\
\\
\\
\\
\\
\\
\mathbf{x}^{\prime} \in\{0,1\}^{c}, \\
c 0,1]^{d} .
\end{array} & \\
&
\end{array}\right.
$$

Using DC to get rid of the binary variables

$$
\left\{\begin{array}{lll}
\min & \left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|+\sum_{k=1}^{c} \mathrm{a}_{k}\left(1-\mathrm{a}_{k}\right) & \\
\text { s.t. } & m \leq f_{k}\left(\mathbf{x}^{\prime}\right)+\left(1-\mathrm{a}_{k}\right) M_{m}, & k=1, \ldots, c \\
& m \geq f_{k}\left(\mathbf{x}^{\prime}\right), & k=1, \ldots, c \\
& \sum_{k=1}^{c} \mathrm{a}_{k}=1, & \tag{3}\\
& \mathrm{a}_{y}=0, & \\
& m \in \mathbb{R}, & \\
& a \in[0,1]^{c}, & \\
& \mathbf{x}^{\prime} \in[0,1]^{d} . &
\end{array}\right.
$$

The End

Thanks for your attention!

Functional Isolation Forest

Guillaume Staerman*
Joint work with
Pavlo Mozharovskyi*, Stéphan Clémençon* and Florence D’Alché-Buc*
MLITRW, October 02, 2019
*LTCI, Telecom Paris, Institut Polytechnique de Paris.

Functional Data Framework

- Let $X=\left\{X(t) \in \mathbb{R}^{d}, t \in[0,1]\right\}$ be a random variable that takes its values in a (multivariate) functional space.
- In practice, we only have access to the realization of X at a finite number of arguments/times, $x=\left\{x\left(t_{1}\right), \ldots, x\left(t_{p}\right)\right\}$ such that $0 \leq t_{1}<\cdots<t_{p} \leq 1$.
- The first step: reconstruct functional object from partial observations (time-series) with interpolation or basis decomposition.

Anomaly detection and functional data

Shape anomalies

Shift anomalies

Isolated anomalies

Functional Isolation Forest

- This ensemble learning algorithm builds a collection of functional isolation trees.
- Functional isolation tree : binary tree based on a recursive and randomized tree-structured partitioning procedure.
- General principle:

1. Select a function \mathbf{d} into a dictionary \mathcal{D}.
2. Compute the dot products $\langle\cdot, \cdot\rangle$ between \mathbf{d} and the data.
3. Draw randomly a treshold κ on the real line.
4. Split the space by a perpendicular hyperplan along d going through κ.
5. Repeat this procedure until every data are isolated!!!

- The trick : an anomaly should be isolated faster than normal data.

Anomaly score prediction

- One may then define the piecewise constant function $h_{\tau}: \mathcal{X} \rightarrow \mathbb{N}$ by: $\forall x \in \mathcal{X}$,
$h_{\tau}(x)=j$ if and only if $x \in \mathcal{C}_{j, k}$ and $\mathcal{C}_{j, k}$ is associated to a terminal node.
- Considering a collection of F-itree $\mathcal{T}_{1}, \ldots, \mathcal{T}_{N}$, the scoring function is defined by

$$
s_{n}(x)=2^{-\frac{1}{N c(n)} \sum_{l=1}^{N} h_{\tau_{l}}(x)}
$$

Thank you!

All codes are available at https://github.com/Gstaerman/FIF

