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Optimization in Deep Learning

Figure 1: Visualization of a loss landscape (VGG-56 on CIFAR-10)
https://www.cs.umd.edu/ tomg/projects/landscapes/

Li et al., Visualizing the Loss Landscape of Neural Nets, NeurlPS 2018

1/7



Problem statement

Problem

min F(x) := E(f(x,£)) w.rt. xeRY

X

Assumptions

» f(.,£): nonconvex differentiable function
» regularity assumptions on f (smoothness, coercivity of F, etc.)

» (&, :n>1): iid copies of r.v £ revealed online
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ADAM : an adaptive algorithm

[Kingma and Ba, 2015]

> Regime : constant step size v > 0.

Algorithm 1 ADAM (v, «, 3, ¢)

1 x€RI  my=0 v=0 v>0,¢>0, (o, 3) €[0,1)%

2: for n>1 do
3 mp=amp_1+ (1 —a)VFf(xs-1,&n)

4 Vp =BVt + (1= B)VF(xa—1,En)?
5: m, = T—an

6: Un = 11"6"

7 7 7

Xn = Xp—1 — Wmn
Xn = Xp—1 — YV F(xn—1,&n) (SGD for comparison)

8: end for
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From Discrete to Continuous Time
The ODE Method [Ljung, 1977, Kushner and Yin, 2003]

Z7(t) interpolated from 2) = (z7,m}, v))

1 Zn—1

0 v 2y 3y (n—1)y nvy
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Continuous Time System
similar approach to [Su, Boyd and Candes, 2016]

Non autonomous ODE
If z(t) = (x(t), m(t), v(t)),
z(t) = h(t, z(t)) (ODE)

Theorem (Convergence)

Jlim d(x(t), VF71({0})) = 0.

c(t) X(t) + co(t) x(t) + VF(x(t)) =0,

» 2nd vs 1st order: acceleration (even if oscillations).
» Escaping local traps (saddle points)
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Long run convergence of the ADAM iterates

» No a.s convergence : regime n — oo then v — 0

Theorem (ergodic convergence of the ADAM iterates)
Let xo € RY, v >0, (z7 : n € N), zJ = (x0,0,0). Under the same
assumptions and :
> Stability assumption: sup, ., Ez]| < cc.
Then, for all 6 > 0,

i i % znjp(d(xg, VFI{O})) > 8) =0. (1)
k=1

WO n—oo
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Thank you for your attention

* I

! |
L-- Discretization D<--'

For more details: submitted article, available on arXiv.

AB, P. Bianchi. Convergence and Dynamical Behavior of the
ADAM Algorithm for Non Convex Stochastic Optimization.
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An economic motivation

Online repeated auctions

Ad slot valued v. Bid p = auctioneer infers v.
Auctioneer’s revenue * while bidder's utility \, when v public.

Bidders

Google

(auctioneen) {1 Google |
‘ 1

Ad Slot Auction A Amazon
n_
rHGrteo ot Customers

n

Online advertisement auction system

Bidder's goal: short term utility and hide value distribution

Boursier & Perchet Privacy and OT MLITRW '19, Criteo Paris
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Toy example

Player: minimizes utility loss

min x' Yk
xEXCRY

yk depends on private type k € {1,..., K} with prior py € Ak.
Adversary: observes x and infers k

Program in previous literature!:

min ZPO xwyk [XTyk]

M1 K

such that E[KL(px, po)] < €

IEilat, R., Eliaz, K., and Mu, X. (2019). Optimal privacy-constrained
mechanisms

Boursier & Perchet Privacy and OT MLITRW '19, Criteo Paris 3/7



General formulation of the problem

Our general program:

inf / (c(x,¥) + AD(px, po)) dy(x,y) (P-OPT)
767;(X><y) XxY
T27Y=Po

e type y ~ py € P(Y)

o mA(A) = 1(X x A)
o ¢ = utility loss ; D = privacy loss (e.g. KL)

Boursier & Perchet Privacy and OT MLITRW '19, Criteo Paris 4/7



Theoretical results

Theorem (Convexity)
If D is an f-divergence, then (P-OPT) is convex in 7.

— (P-OPT) easy for finite X and ).

Theorem (Finite prior support)

If |supp(po)| = K, for all ¢ > 0, we can look for a solution of
(P-OPT) with support of size K(K + 2).

— finite dimension ® but not jointly convex &

Boursier & Perchet Privacy and OT MLITRW '19, Criteo Paris 5/7



Sinkhorn divergence minimization

Definition (Sinkhorn divergence)

dvy
OTca(p,v) = 7eir|rE£ V)/cd’y + )\/Iog (d W > dvy

@ entropic regularization == fast OT distances approximation?

If D=KL, (P-OPT) equivalent to

f OT.
A (ks po)-

2Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal
transport

Boursier & Perchet Privacy and OT MLITRW '19, Criteo Paris 6/7



Recap

@ utility-privacy trade-off motivated by economic mechanisms
o general regularized problem

@ convexity + finiteness under mild assumptions

@ benefit from Sinkhorn divergence

@ find our simulations in the paper

Slides, code and paper at eboursier.github.io

Thank you !

Boursier & Perchet Privacy and OT MLITRW '19, Criteo Paris 7/7
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Bayesian computation and machine learning

Nicolas Chopin (ENSAE, IPP)



PAC-Bayes

Uses as an estimator the expectation of pseudo-posterior:

p(xly) o< p(x) exp{—vR(x,y)}

where R(x, y) is the empirical risk, for parameter x and data y.



How to compute this expectation?

1. Fast variational approximation: but can you we obtain the
same non-asymptotic bounds? See Alquier, Ridgway and C.
(2016, JMLR).

2. Monte Carlo methods: isn't that slow? not if you do it right,
e.g. Sequential Monte Carlo (Ridgway et al, NIPS, 2014).



Other applications of Bayesian computation

1. Probabilistic machine learning.
2. Sequential learning: use Sequential Monte Carlo?

3. Non-convex optimisation



Improved Algorithms for Conservative
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Revenue

Known underperforming policies

Current policy

Unknown policies



Cumulative Revenue

UCB Algorithm /I

Current Policy

Time

Revenue loss
during learning




Problem: How to learn an optimal policy
without sacrificing much revenue?

(aka: how to perform exploration in a conservative way?)



Conservative Condition

Mean revenue of
current policy

[V

t
YVt > 0, v Zrml (1 — Oé)‘t Ly
[=1

v
Mean revenue of the / Controls maximum

learning algorithm revenue lost during
learning




Theoretically optimal algorithms for

conservative exploration (CUCB) (wu etal.
2016, Kazerouni et al. 2017)

in multi-armed
and linear bandit (CUCB2)
conservative

condition




C U C B (previous algorithm) C U C BZ (our algorithm)

- Two phase algorithm - Computes set of safe arms

a. Computes optimistic arm - Plays the optimistic arm among safe arms
b. Checks a lower bound on the total revenue

=> impacts empirical performance! => same regret but better performance!

H2
o/l }m

M4 ‘= Up E,UIS
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A PAC-Bayes perspective on binary-activated deep

neural networks
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https://bguedj.github.io
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Context

m Learning is to be able to generalise!

m PAC-Bayes has been successfully used to analyse and understand
generalisation abilities of machine learning algorithms.

] G., "A Primer on PAC-Bayesian Learning”, invited for publication
in the Proceedings of the French Mathematical Society,
https://arxiv.org/abs/1901.05353

B 2 G. & Shawe-Taylor, A Primer on PAC-Bayesian Learning”, ICML
2019 tutorial https://bguedj.github.io/icm12019/index.html

m Most PAC-Bayes generalisation bounds are computable tight
upper bounds on the population error, i.e. an estimate of the error
on any unseen future data.

m PAC-Bayes bounds hold for any distribution on hypotheses. As
such, they are a principled way to invent new learning algorithms.
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G. Letarte, P. Germain, B. G., F. Laviolette. Dichotomize and
Generalize: PAC-Bayesian Binary Activated Deep Neural Networks, to
appear in NeurlPS 2019

https://arxiv.org/abs/1905.10259

We focused on DNN with a binary activation function: surprisingly
effective while preserving low computing and memory footprints.

m Very few meaningful generalisation bounds for DNN
Breakthrough: SOTA PAC-Bayes generalisation bound

m How to train a network with non-differentiable activation function?
Breakthrough: training by minimising the bound (SGD + tricks)
m Who cares? Generalisation bounds are a theoretician’s concern!

Breakthrough: Our bound is computable and serves as a safety
check to practitioners


https://arxiv.org/abs/1905.10259

Binary Activated Neural Networks

mXxXcR% yec{-11}
Architecture:
m L fully connected layers
m dy denotes the number of neurons of
the k™ layer @ @ @
m sgn(a) =1ifa>0andsgn(a) = —1
otherwise
Parameters:
m W, € R%*%-1 denotes the weight

matrices.
m 0 :V6C<{Wk}k:1) eRP

Prediction
fo(x) = sgn(stgn(Wqugn(. : .sgn(W1 x)))) :



Generalisation bound



Generalisation bound

For an arbitrary number of layers and neurons, with probability at least
1 — 35, forany 6 € RP

Rout(FG) <

. 1 1110 — 8ol2 + log 2™
Cm>f0 {1—60 (1 — exp <—CRm(Fe) - m ,

where

1 1 1
Rin“:e) = E Rin(fO’) - P 7yiF9(xi) .
0/'~Qq m 4 2 2

i=1



(A selection of) numerical results

Model name Cost function Train split  Valid split Model selection Prior

MLP—-tanh linear loss, L2 regularized 80% 20% valid linear loss -

PBGNet, linear loss, L2 regularized 80% 20% valid linear loss random init

PBGNet PAC-Bayes bound 100 % - PAC-Bayes bound random init

PBGNetpre

— pretrain linear loss (20 epochs) 50% - - random init

— final PAC-Bayes bound 50% - PAC-Bayes bound pretrain

MLP-tanh PBGNet, PBGNet PBGNetpre

Dataset Es Er Es Er Es Er Bound Es Er Bound
ads 0.021 0.037 0.018 0.032 0.024 0.038 0.283 0.034 0.033 0.058
adult 0.128 0.149 0.136 0.148 0.158 0.154 0.227 0.153 0.151 0.165
mnist17 0.003 0.004 0.008 0.005 0.007 0.009 0.067 0.003 0.005 0.009
mnist49 0.002 0.013 0.003 0.018 0.034 0.039 0.153 0.018 0.021  0.030
mnist56 0.002 0.009 0.002 0.009 0.022 0.026 0.103 0.008 0.008 0.017
mnistLH 0.004 0.017 0.005 0.019 0.071 0.073 0.186 0.026 0.026 0.033



Benjamin Guedj



Thanks!

We have several PhD / postdoc / visiting researcher positions available
in my group, based in London and affiliated with Inria and UCL.

Feel free to reach out!
https://bguedj.github.io
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A Large Random Linear System

We are interested in the equation

where

» x is a N X 1 unknown vector,

» 1 isa N x 1 vector of ones,

» Aisa N x N random matrix with i.i.d. entries A/(0, 1),

> « is a positive scalar parameter to be tuned.

Questions

A -1
> Does this system admit a solution | x = (I — 7N) 1

» Conditions to get a solution @ with positive components?

Motivation

> Feasibility and stability in ecological networks.



_A

Confinement of the spectrum of N



A

Confinement of the spectrum of

Non-hermitian matrix eigenvalues, N= 20
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Confinement of the spectrum of

Non-hermitian matrix eigenvalues, N= 50
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Im(spectrum)
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Non-hermitian matrix eigenvalues, N= 100
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Confinement of the spectrum of —A

Non-hermitian matrix eigenvalues, N= 200
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Non-hermitian matrix eigenvalues, N= 1000
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Confinement of the spectrum of N

Non-hermitian matrix eigenvalues, N= 1000

0250090 o
£l & wo%b
(AR

Boo G 3
R A

L]

(wnioeds)uw)

10

0.0

Re(spectrum)

in red)

(
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Theorem: The Circular Law (Ginibre, Metha, Girko, Tao & Vu, etc.)

The spectrum of ﬁ converges to the uniform probability on the disc
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Existence of a solution .. with no positive components

» From the spectrum confinement property,

A -1
22(177) 1 existsfora >1
N

> but
1
T ~ N—<1’271) iid. as N — oo
a2 —

» As a consequence

IP’{ inf mk>0} ~ Pz >0 —— 0.
ke[N]

N—o0

= no positive solutions
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Consider now the case | & = ay ——— c©
N —oc0

Theorem (phase transition, Bizeul-N. '19)

> If
ay <5 /2log(N)

then

]P’{ inf xp > 0} —0 = no positive solutions.
k€E[N] N—o0




Positivity of the solution

Consider now the case |« = ay —— ©
N— o0

Theorem (phase transition, Bizeul-N. '19)

> If
any <s v/2log(N)
then
]P’{ inf xp >0} — 0 = no positive solutions.
k€E[N] N—o0
> If
an >5 /2log(N)
then

IP’{ inf xzp > 0} —1 = positive solutions.
ke[N] N—oc0




Phase transition (gaussian case)

Homogeneous case, Gaussian entries

104 — N=500
— N=2000 —
—— N=5000 -
-=- Threshold 4

> We plot the frequency (over 500 trials) of positive solutions for the linear system
1+ ! A
= _
ky/log(N) VN

as a function of the normalization parameter k.

€T

> As expected, we observe threshold phenomenon around the critical value kK = V2.
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A heuristics for the critical scaling
1. Unfold the resolvent and write

" A \7! 4 Ry,
T = e (I — ﬂ) 1 = 1+ Zk + a—g (remainder term)

2. Notice that

Zyr ~ N(0,1) iid. and min Zj ~ —v/2log(N)
ke[N]

by extreme value theory.

3. Conclude

i Z v/ 2log(N
min x, & l+w+u~ ~ 1_ﬁ
ke[N] [o% o



A heuristics for the critical scaling
1. Unfold the resolvent and write
« A \! Z, Ry, .
Ty = e (1 — m) 1 = 1+ - + =2 (remainder term)
2. Notice that

Zyr ~ N(0,1) iid. and min Zj ~ —v/2log(N)

ke[N]
by extreme value theory.
3. Conclude
min e o~ 1y DTy VRl

4. The key control of the remainder term Ry can be proved via gaussian
concentration.

manE[N] Rk P and minke[N] Rk P

0
Oc\/210g(N) N—o0 a1/210g(N) N — o0




A heuristics for the critical scaling

1. Unfold the resolvent and write
A

*

-1
n o= a(-gm) 1 -

2. Notice that
Zx ~ N(0,1) iid.
by extreme value theory.
3. Conclude

min zr ~ 1+
ke[N]

and

minge(n) Zk

Zy,

Ry
14+ ZE 4 7’2“ (remainder term)
o «

min Z ~ —+/2log(N
relN) k g(N)

v/2log(N)

a

~ 1-

4. The key control of the remainder term Ry can be proved via gaussian

concentration.

maxgen] Be  p

0
a/2log(N) N—oo

and

mingev) Be p

ay/2log(N) N—oo

Thank you for your attention!
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INCREASING DEMAND OF COMPUTE Light#n

Microsoft boss: World needs more
computing power

By Joe Miller
BEBC MNews, Davos

‘} Thom Quinn

| @tpq__

Is deep learning right for you? Now in 1 easy step:
(Q) Do you have more than 10,000 samples?

> If no -- sorry, you don't have enough samples
> |f yes -- sorry, you don't have enough compute

10/01/2019 LightOn SAS



INCREASING DEMAND OF COMPUTE Light#n

2 Eliot Andres [ romew ) ©
' @EliotAndres

We just received the new iPhone 11!
Wondering how it improved regarding
machine learning? We put together a
small benchmark. A thread

= ==

10/01/2019 LightOn SAS




ECOLOGICAL IMPACT OF Al Light#n

ﬁ»\ Andrej Karpathy @
QP ©@karpathy

Dr Chloé Azencott 9
@cazencott "Hybrid Optical-Electronic Convolutional

Neural Networks"

In a single day, | heard both Marc incredibly interesting work

Schoenauer and @katecrawford discuss the - develops a hybrid optoelectronic CNN with
ecological impact of Al and we need much an optical CONV1 layer that operates at zero
more of this conversation. power consumption (with rest of the forward

pass in electronics (for now))

10/01/2019 LightOn SAS




ECOLOGICAL IMPACT OF Al Light#n

Green Al

Roy Schwartz, Jesse Dodge, Noah A. Smith, Oren Etzioni

(Submitted on 22 Jul 2019 (v1), last revised 13 Aug 2019 (this version, v3))

The role of artificial intelligence in achieving the
Sustainable Development Goals

Ricardo Vinuesa, Hossein Azizpour, lolanda Leite, Madeline Balaam, Virginia

Dignum, Sami Domisch, Anna Fellander, Simone Langhans, Max Tegmark,
Francesco Fuso Nerini

(Submitted on 30 Apr 2019)

10/01/2019 LightOn SAS




OPTICAL PROCESSING UNIT Light@n

1M input - 1M output
Speed: 2 kHz
Power:30W

10/01/2019 LightOn SAS o



RANDOM FEEATURES AND PROJECTIONS Light#n

Random Features for Large-Scale Kernel Machines

Ali Rahimi Benjamin Recht
Intel Research Seattle Caltech IST
Seattle, WA 985105 Pasadena, CA 91125
ali.rahimif@intel.com brechtldist.caltech.edu

Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix
decompositions

Nathan Halko, Per-Gunnar Martinsson, Joel A. Tropp

10/01/2019 LightOn SAS



~ LIGHT SCATTERING a6 i

Credit: Emmanuel Bossy- Simsonic Software Georges de la Tour — Saint Joseph charpentier

10/01/2019 LightOn SAS Q




LIGHT SCATTERING - Lighter

Credit: Emmanuel Bossy- Simsonic Software Georges de la Tour — Saint Joseph charpentier

10/01/2019 LightOn SAS 9




LIGHT SCATTERING - Light®#n

Credit: Emmanuel Bossy- Simsonic Software Georges de la Tour — Saint Joseph charpentier

10/01/2019 LightOn SAS @




REINFORCEMENT LEARNING

Model-Free Episodic Control

Charles Blundell Benigno Uria Alexander Pritzel
Google DeepMind Google DeepMind Google DeepMind

cblundell@google. com buria@google.com apritzel@google.com

Yazhe Li Avraham Ruderman Joel Z Leibo Jack Rae
Google DeepMind Google DeepMind Google DeepMind  Google DeepMind
yazhe@google.com aruderman@google.com jzl@google.com jwrae@google.com

Daan Wierstra Demis Hassabis
Google DeepMind Google DeepMind
wierstra@Qgoogle.com demishassabis@google.com

Light#%n

10/01/2019 LightOn SAS




REINFORCEMENT LEARNING

Light#%n

Q(Rsy_1.a_1)

A
Ft—1
H B
—l -
a't—]. Al_E °| argmax,

k-nn

Qs a)

Qi Rse)t™M, a)

(H{ Rz )@ a)

QUi ) a)

QUi ftse) ™M, a)

Credit: Martin Graive - Lighton

avg
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REINFORCEMENT LEARNING Light#n

Credit: Martin Graive - Lighton
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REINFORCEMENT LEARNING Light#n

Credit: Martin Graive - Lighton
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REINFORCEMENT LEARNING Light#n

Credit: Martin Graive - Lighton
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NOT ONLY IMAGES... Light#n

NO TRAINING REQUIRED: EXPLORING RANDOM EN-
CODERS FOR SENTENCE CLASSIFICATION

John Wieting™ Douwe Kiela
Carnegie Mellon University Facebook Al Research
jwieting@cs.cmu.edu dkiela@fb.com
Word OPU Random Pooling
embeddings mapping projections (mean)
i Ty
I el :{> f1 S
. IE,
. N
ate e2 :{> £2 T
: — IE,
cake e3 :{> f3 =
: C
i E
today ed % f4 D

Credit: Francois Boniface - Lighton

10/01/2019 LightOn SAS




NOT ONLY IMAGES... Light#n

Shedding Light on the “Grand Débat”
% ;Erh:?:1 min read

(:} LightOn

Using Light to change the Future of Computing

Credit: Francois Boniface - Lighton

10/01/2019 LightOn SAS



NOT ONLY IMAGES... Light#n

-Biodiversity

All suggestions

Pollution and biodiversity

Biodiversity
and climate
change

" Air pollution

WVarious pollutions @

. 1

Climate Pollution and climate
change

Climate change

Credit: Francois Boniface - Lighton

10/01/2019 LightOn SAS @



TRY [T OUT ! Light®n

@ \ /
Light®n
CLOUD
Thank you !
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Design a Recommendation Agent that can collect the largest reward in the RecoGym environment!



Motivating Example

i o>

Time

Product
view




Motivating Example
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Motivating Example

i o>

Product
view




Motivating Example
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Recommend




The RecoGym Challenge 100 W @Recocym

RecoGym is recommendation simulator/game
that allows us to:

Simulate an A/B Test from the comfort of your own
home, allowing evaluation that is currently

‘ R/

Re CO G ym * Prize of 1000 euros (deadline 30 Nov)

https://github.com/criteo-research/reco-gym

You too can experience the excitement and joy of
negative and neutral A/B Tests!



https://github.com/criteo-research/reco-gym

CrdalLab

Search Competitions My Competitions Help  Sign Up

Sign In

RecoGym Challange

Organized by Criteo - Current server time: Oct. 1, 2019, 8:22 p.m. UTC

T
( v

-
\A/ » Current Next End
W\ (/]
=
Oct. 1, 2019, midnight UTC Nov. 30, 2019, midnight UTC Dec. 1, 2019, midnight UTC

Learn the Details ~ Phases  Participate | Results | Public Submissions — Forums=J

Development -

Phase description

Development phase: create models and submit them or directly submit results on validation and/or test data; feed-back are provided on the validation set
only.

Max submissions per day: 5

Max submissions total: 100

Download CSV

Click-Through Rate Results

nm Date of Last Entry CTR (q0.500), % A | CTR (q0.025), % A | CTR (q0.975), % A | Time (seconds) A |Detailed Results

1 ihtiihti 5 10/01/19 1.492 (1) 1431 (1) 1.554 (1) 594 (2) View
2 MartinB 10/01/19 1.434 (2) 1374 (2) 1.495 (2) 55.2 (1) View

3 Giteo 4 09/30/19 Criteo 1.403 (3) 1.344 (3) 1.464 (3) 375.6 (3) View



Crdalab

Search Competitions My Competitions Help  Sign Up

Sign In

e RecoGym Challange
(\@/v@/’ Organized by Criteo - Current server time: Oct. 1, 2019, 8:22 p.m. UTC
a a
\A/ » Current Next End
\ 1
=
Oct. 1, 2019, midnight UTC Nov. 30, 2019, midnight UTC Dec. 1, 2019, midnight UTC

Learn the Details  Phases  Participate | Results | Public Submissions  Forums =J

Development -

Phase description

Development phase: create models and submit them or directly submit results on validation and/or test data; feed-back are provided on the validation set
only.

Max submissions per day: 5

Max submissions total: 100

Download CSV

Click-Through Rate Results

s omortan oy Lt [ nsi0, & _[ca008.5 40579 5.4 e o

1 ihtiihti 5 10/01/19 1.492 (1) 1431 (1) 1.554 (1) 59.4 (2) View
2 MartinB 10/01/19 1434 (2) 1374 (2) 1.495 (2) 55.2 (1) View
3 Criteo 4 09/30/19 Criteo 1.403 (3) 1.344 (3) 1.464 (3) 3756 (3) View



Okay, what is the challenge?

Within the challenge, there are two tasks:

* RecoGym Challenge 100: Learning to recommend with 100 just
actions. Prize 1000 euros. Live now!

* RecoGym Challenge 10 000: Learning to recommend in a larger
action spaces. Prize 2000 euros. Stay Tuned



Important links

Follow us on Twitter: @RecoGym

RecoGym challenge website:
https://sites.gsoogle.com/view/recogymchallenge/home

RecoGym repo: https://github.com/criteo-research/reco-gym
(the simulator, along with many tutorials and notebooks)



https://sites.google.com/view/recogymchallenge/home
https://github.com/criteo-research/reco-gym

INSA LOA

ROUEN NORMANDIE UNIVERSITE 1 0,01 |0

Glermont e wars Qitis [ LIMOS

Difference-of-Convex Algorithm applied to adversarial

robustness verification

Ismaila Seck 123 Gaelle Loosli 34
Stephane Canu 23 Yi-Shuai Niu >

!Normandie Univ, INSA Rouen 2UNIROUEN, UNIHAVRE, LITIS 3UCA, LIMOS

4PobRun 3School of Mathematical Sciences, Shanghai Jiao Tong University

October 2, 2019



Adversarial examples

input image classified as

+

adversarial noise
dversarial image . e
misclassified as

al
l v
= ‘ >

Figure 1: Illustration of the use of adversarial examples.

shortname (shortinst) October 2, 2019 1/4



Formulation as an optimization problem

@ X,y : original image and its class
e x' : adversarial image we are looking for
o f(.) : the k-th output of the network

min |x — x|

s.t. argmax f(x') # y, (1)
k=1,...,c
x' € [0,1]9.

shortname (shortinst) October 2, 2019 2/4



Formulation as an optimization problem

@ X,y : original image and its class
e x' : adversarial image we are looking for
o f(.) : the k-th output of the network

min ||x — X/||

s.t. argmaxfi(x') # vy, (1)
k=1,...,c
x' € [0,1]9.

shortname (shortinst) October 2, 2019 2/4



Linearization of the argmax constraint

st. m<A(X)+(1—-a)My,, k=1,...,c

shortname (shortinst) October 2, 2019 3/4



Using DC to get rid of the binary variables

Cc
min ||x — x'|| + Zak(l — ak)
k=1

st. m < fi(x) —i—i(l —a )My, k=1,...,c
m > fi(x'), k=1,...,c

S a1 3)

a, =0,
meR,
a € [0,1]¢,
x € [0,1]9.

shortname (shortinst) October 2, 2019 4/4



The End

Thanks for your attention |



TELECOM
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PARIS

Functional Isolation Forest

Guillaume Staerman*

Joint work with

Pavlo Mozharovskyi*, Stéphan Clémencon* and Florence D’Alché-Buc*

MLITRW, October 02, 2019

*LTCI, Telecom Paris, Institut Polytechnique de Paris.



Functional Data Framework

e Let X = {X(t) € R?, t €[0,1]} be a random variable that takes its
values in a (multivariate) functional space.

e In practice, we only have access to the realization of X at a finite
number of arguments/times, x = {x(t1),...,x(t,)} such that
0§t1<'~'<tp§1.

e The first step: reconstruct functional object from partial
observations (time-series) with interpolation or basis decomposition.




Anomaly detection and functional data

Shape anomalies Shift anomalies




Functional Isolation Forest

e This ensemble learning algorithm builds a collection of functional

isolation trees.

e Functional isolation tree : binary tree based on a recursive and

randomized tree-structured partitioning procedure.

e General principle:

1.
2.

e The trick : an anomaly should be isolated faster than normal data.

Select a function d into a dictionary D.
Compute the dot products (-, -) between d and the data.
Draw randomly a treshold x on the real line.

Split the space by a perpendicular hyperplan along d going through
K.
Repeat this procedure until every data are isolated!!!



Anomaly score prediction

e One may then define the piecewise constant function h, : X =+ N
by: Vx € X,

h:(x) = j if and only if x € Cj x and C;  is associated to a terminal node.

e Considering a collection of F-itree 71, ..., Ty, the scoring function
is defined by
S,,(X) = z_ﬁ 27\1:1 hT/(X)7

x €Cay = hr(z)=2



Thank you !

All codes are available at https://github.com/Gstaerman/FIF


https://github.com/Gstaerman/FIF
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