Macroscopes of Human behavior: the case of biomedical sensing

Nicolas Vayatis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Joint work with

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- PhD students: Rémi Barrois-Muller, Thomas Moreau*, Alice Nicolaï, Charles Truong*, Aliénor Vienne
- Researchers: Julien Audiffren, Ioannis Bargiotas, Juan Mantilla, Laurent Oudre*
- MD-PhDs: Catherine de Waele, Damien Ricard, Pierre-Paul Vidal, Alain Yelnik

Introduction

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

ML in the Real world

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Modeling

- Definition of the objective (and constraints)
- Value of automatic decisions for human experts
- Information
 - Access to relevant data
 - Data preparation
- Scaling-up
 - Learning-to-learn
 - Monitoring the pipeline

ML in healthcare

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Modeling objective:
 - automatic diagnosis?
 - therapy recommendation?
- Data sources:
 - clinical trials, social security, hospital
 - mainly aggregated or reduced data
- Scaling-up?
 - Not yet there
 - Some industrial failures
 - Why is it hard?

What is the relevant level of study of Human behavior?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

There are other options...

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Diagnosis and health monitoring

Rationale behind the project

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Statement of work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Central research question:
 - Empirical, but quantitative, study of Human behavior regular, pathological, altered through its sensory-motor transformations
- Main assumption:
 - All Humans are different from each other but have constant behavior over time
- Conditions of study:
 - Individual follow-up in 'natural' conditions, with 'light' sensors to allow access to large cohorts
- Challenge:
 - Find and define standards for protocols, data, evaluation

The context of this project

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Objective:
 - Assessing gait and posture for neurology, ENT and rehabilitation in the field (consultation, hospital)
- State-of-the-art:
 - Dozens of quantitative studies using classical statistical methods focusing on 2 to 5 features with around 100 subjects per study
- Few public data available
 - mostly aggregated, essentially healthy subjects.

Where it all started In 2012, a students' project

Question asked: How to have objective values for neurological (Romberg) tests in routine consultation?

The case of posturography

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Romberg test: eyes open/close for 20s (result of a consensus)
- SoA: use AMTI force plate (10kE), around 100 patients per cohort, about 5 average features per recording,
- Our project: use WBB (80E) in 10 consultations, 3k recordings in less than 6 months, more than 1000 features (including local ones) used to predict the risk of fall.

What we achieved It took five years...

- A full and valid pipeline of data acquisition and processing from sensors to the clinician dashboard that operates in routine consultation and discovery of new markers of balance disorders (phenomic codes)
- Databases (to be published), publications (Sensors, IEEE Trans. SP, ICML, PlosOne, Frontiers, ...), opensource software and licensed patents
- Inclusion in a social security program for preventing frail states in the elderly population
- Last but not least: an interesting blend of cultures between mathematicians, computer scientists, engineers, ergonomists, neuroscientists, clinicians, psychologists

Why gait and posture?

(日) (四) (日) (日) (日)

- Most frequent and dynamic human activity
- Marker of several troubles: neurologic, orthopedic, rheumatologic...
- Strongly affects everyday life: risk of fall, frailty, mobility, loss of autonomy...
- Important cause of morbidity, high cost for public health

Quantification of walking ability

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The study of walking

- Traditionally: clinical assessment made by the clinician, functional tests, questionnaires
 - (+) Easy to execute, requires clinical expertise
 - (-) Lack of precision, difficult to compare sessions
- Platforms for measuring locomotion: sensing floor, video and optical systems
 - (+) High precision, extraction of many parameters, objective quantification
 (-) High cost, hard to use

Sensing protocol

- Protocol at confort speed: stop (6 sec), directed walk (10 m), U-turn, directed walk (back), stop
- Four wireless inertial units (IMU): left foot, right foot, lower back, head
- Nine signals per sensor : linear accelerations (3D), angular speed (3D), magnetic fields (3D)

・ コ ・ ・ 雪 ・ ・ ヨ ・ ・

Accelerometric signals on a walk exercise

Figure 1.3: Vertical acceleration (m/s²) of the lower back sensor for two different subjects. Alternating colours mark the consecutive phases: "Stand", "Walk", "Turnaround", "Walk" and "Stop".

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへ(で)

Signal characteristics

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Nonstationary signals

 → How to detect and categorize different regimes (stop, walk, U-turn...) ?
- Repeated but irregular patterns
 → Location and shape?
- A particular pattern of interest : the step → Locate precisely beginning and end of each step?

A sample of research topics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1. Segmentation
- 2. Dictionary learning

Topic #1 - Segmentation

Goal of the segmentation method

 Find automatically the changepoints (start to walk, walk to U-turn, U-turn to walk, walk to stop) under weak or no supervision

Review on changepoint detection

• Modular view on the complete literature for offline changepoint detection

• More than 150 references with methodological contributions, thousands of application papers...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Selective review to appear in Signal Processing + Python package *ruptures*, by Truong, Oudre, V.

Optimal method

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Cost function Search method Constraint

How to minimize over the space of segmentations? Exhaustive enumeration is impractical: $\mathcal{O}(T^K)$ segmentations with K changes.

Optimal resolution

For Problem 1 (fixed K) and Problem 2 (unknown K), based on **dynamic programming**, using

$$\min_{|\mathcal{T}|=K} V(\mathcal{T}) = \min_{1 \le t < T} \left[c(y_{0..t}) + V(\widehat{\mathcal{T}}_{t..T}^{K-1}) \right]$$

where $\widehat{T}_{t,T}^{K-1}$ is the optimal segmentation of $y_{t,T}$ with K-1.

Complexity.

- Problem 1: $\mathcal{O}(T^2)$ (Bellman, 1955).
- Problem 2: $\mathcal{O}(T)$ (Killick et al., 2012).

Approximation method

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Requirements for the gait data

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Computational cost almost real time and should operate on a clinicians laptop or surface
- Versatility Ability to adapt to a wide range of protocols, sensors and patients.
- Automatic calibration No hyperparameter can be tuned in routine.

A two-step greedy strategy

Follows the principle of OMP (Mallat, Zhang, 1993).

- Step 1: Detection of a single changepoint in the signal
- Step 2: Removal of the detected changepoint by projection

- Stop when *K* changepoints have been detected
- Use a kernel in the cost function
- Linear complexity for each detection/projection
- Consistency results available

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Results

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Metric	Approximate		Exact	
	gkCPD	gCPD	$Opt(c_{L_2})$	$Opt(c_{rbf})$
HAUSDORFF	1.13 (±0.67)	1.34 (±0.58)	1.80 (±2.35)	1.29 (±1.06)
RANDINDEX	0.91 (±0.02)	0.90 (±0.03)	0.92 (±0.02)	0.91 (±0.02)
F1 SCORE	0.85 (±0.15)	0.73 (±0.20)	0.85 (±0.13)	0.83 (±0.15)
Hausponer is in a	acond The margin of	Et cooper is M - 1		

Experimental evaluation. On the Gait signals (Spectrogram).

HAUSDORFF is in second. The margin of F1 score is M = 1 sec.

Execution time comparison. Time to process 100 signals from Gait.

- gkCPD: 1 min 30 sec
- Opt (c_{rbf}) : > 2 days.

Comments.

- gkCPD is more accurate than gCPD for all metrics.
- gkCPD is close to Opt for F1 score.
- gkCPD is faster than Opt.

Further contributions

Unknown number of changepoints (TOV-EUSIPCO'17)

- Supervised procedure to determine the smoothing parameter
- Need fully annotated signals (timestamp of changepoint)

Kernel/metric learning (TOV-ICASSP'19)

- Semi-supervised procedure to learn the kernel
- Need partially annotated signals (not changepoints)

Full vs. partial annotations

イロト 不得 トイヨト イヨト

Topic #2 - Dictionary learning

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Locating patterns

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Model for sparse convolutional coding

Consider *d*-dimensional signals X of length T

- Patterns **D**_k with length W
- Activations Z_k of length L = T W + 1

$$X[t] = \sum_{k=1}^{K} (Z_k * \boldsymbol{D}_k)[t] + \mathcal{E}[t], \qquad orall t \in \llbracket 0, T-1
rbracket$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where \mathcal{E} independent and centered noise signal

Resolution by alternating optimization

• Dictionary learning

$$\boldsymbol{D}^* = \operatorname*{argmin}_{\boldsymbol{D} \in \Omega} \frac{1}{N} \sum_{n=1}^{N} \frac{1}{2} \left\| \boldsymbol{X}^{[n]} - \sum_{k=1}^{K} \boldsymbol{Z}^{[n]}_k * \boldsymbol{D}_k \right\|_2^2$$

where $\boldsymbol{\Omega}$: set of normalization constraints.

Convolutional sparse coding

$$Z^{*} = \underset{Z=(Z_{1},...,Z_{K})}{\operatorname{argmin}} \frac{1}{2} \left\| X - \sum_{k=1}^{K} Z_{k} * \boldsymbol{D}_{k} \right\|_{2}^{2} + \lambda \sum_{k=1}^{K} \left\| Z_{k} \right\|_{1}$$

Looks straightforward but...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Signals can be very long
 - \rightarrow How to speedup sparse convolutional coding?
- Parallelization strategy:
 - Each worker processes one subsegment
 - Use message passing in case of interferences

Basic idea of message passing

- Chose subsegment length much larger than pattern size to minimize the amount of interferences
- Significant acceleration and convergence proof under weak assumptions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Results (1/2)

- Unsupervised learning of repeated and relevant patterns
- Can be used for very long signals (ambulatory, ECG...)

(日)

Results (2/2)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Figure 2. Evolution of the loss function for DICOD, LGCD, CD, FCSC and FISTA while solving sparse coding for a signal generated with default parameters relatively to the number of iterations.

Figure 3. Evolution of the loss function for DICOD, LGCD, CD, PCSC and FISTA while solving sparse coding for a signal generated with default parameters, relatively to time. This highlights the speed of the algorithm on the given problem.

• Superlinear acceleration with respect to the sequential implementation

What we learned

The meat is not in predicting

Old is not dead

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

ruptures : change point detection in Python

Simulated 2D signal

import ruptures as rpt

- # signal generation
 signal, bkps = rpt.pw_normal(n_samples=500, n_bkps=4)
- # change point detection
 algo = rpt.Dynp(model="rbf").fit(signal)
 result = algo.predict(n_bkps=4)

Python code.

ML in healthcare

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Modeling objective:
 - Do not aim at diagnosis: the future is about prevention
 - Developing proper metrology of Human body is already challenging and useful
- Data sources:
 - Nowcasting requires individual and fresh data
 - Wearable and ambient sensors have to be considered within full pipelines including sophisticated preprocessing and machine learning layers designed with field experts (clinicians, ergonomists, neuroscientists)
- Scaling-up?
 - A political issue...
 - Too big for startups?
 - Also a software project, the easier to fail...

No data, no party

- Importance of preprocessing for using advanced ML
- Access to raw and synchronized data in healthcare monitoring systems is THE issue

Connecting people

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Matching agendas between clinicians and ML people
- Who has the power?
- Evaluation of careers out of disciplinary silos
- New forms of cooperation between academia, industry and... social security

Thank you!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで