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Algorithmic fairness

I Aim: ensure that learning algorithms do not treat subgroups in the population
“unfairly”

I How: impose “fairness” constraints (different notions)

I Difficulty: study computationally efficient algorithms with statistical guarantees
w.r.t. both the risk and the fairness measure

Binary classification setting: let µ be a prob. distribution on X × S × {−1,+1}, where
S = {a, b} is the sensitive variable set. We wish to find a solution f ∗ of

min
f ∈F

{
P
(
f (X , S)6=Y

)
s.t. “f is fair”

}
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Fairness constraints
(see e.g. [Hardt et al., 2016, Zafar et al., 2017])

I Equal opportunity (EO): P
(
f (X ,S)>0|Y=1, S=a

)
= P

(
f (X , S)>0|Y=1,S=b

)
I Equalized odds (EOd): f (X , S) and S are conditionally independent given Y , i.e.

P
(
f (X , S)>0|Y=y ,S=a

)
= P

(
f (X ,S)>0|Y=y ,S=b

)
, y ∈ {−1, 1}

I Demographic parity (DP): P
(
f (X , S)>0|S=a

)
= P

(
f (X , S)>0|S=b

)
I We may also loose each constraint by requiring the l.h.s. to be close to the r.h.s.
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Statistical learning setting

I Let ` : R× Y → R be a loss function and let L be the associated risk:

L(f ) = E[`(f (X ),Y )], for f : X → Y

I Conditional risk of f for the positive class in group s:

L+,s(f ) = E[`(f (X ),Y )|Y = 1, S = s]

I We relax the fairness constraint by using a loss function in place of the 01-loss and
introduce a parameter ε ∈ [0, 1]. For EO, we obtain

min
f ∈F

{
L(f ) s.t.

∣∣L+,a(f )−L+,b(f )
∣∣ ≤ ε} (1)
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Fair empirical risk minimization (FERM)
[Donini et al. NeurIPS 2018]

I Distribution µ is unknown and we only have a data sequence (xi , si , yi )
n
i=1 sampled

independently from µ. We then consider the empirical problem

min
f ∈F

{
L̂(f ) s.t.

∣∣L̂+,a(f )−L̂+,b(f )
∣∣ ≤ ε̂} (2)

where ε̂ is a parameter linked to ε

I Empirical risk L̂(f ) = 1
n

n∑
i=1

`(f (xi ), yi )

I Empirical risk for the positive samples in group g : L̂+,g (f ) = 1
n+,g

∑
i∈I+,g

`(yi , f (xi ))

with I+,g = {i : yi=1, si=g} and n+,g = |I+,g |, g ∈ {a, b}
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Statistical analysis of FERM

We say a class of functions F is learnable (wrt. loss `) if:

sup
f ∈F

∣∣L(f )− L̂(f )
∣∣ ≤ B(δ, n,F), with lim

n→∞
B(δ, n,F) = 0

Proposition 1. Let δ ∈ (0, 1). If F is learnable f ∗ solves (1) and f̂ solves (2) with
ε̂ = ε+

∑
g∈{a,b} B(δ, n+,g ,F) then with prob. ≥ 1− 6δ it holds simultaneously:

L(f̂ )− L(f ∗) ≤ 2B(δ, n,F)∣∣L+,a(f̂ )− L+,b(f̂ )
∣∣ ≤ ε+ 2

∑
g∈{a,b}

B(δ, n+,g ,F)
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Implications of the bound

I Bound implies that a solution f̂ of (2) is close to a solution of f ∗ of (1) both in
terms of the risk and fairness constraint

I But how do we find f̂ ? We would like to solve problem (2) for the hard
(misclassification) loss:

min
f ∈F

n∑
i=1

1{f (xi ) 6=yi} (3)∣∣P̂ {f (x)>0|y=1, s=a}−P̂ {f (x)>0|y=1, s=b}
∣∣ ≤ ε

I We propose to replace the hard loss in the risk with the (larger) hinge loss, and the
hard loss in the fairness constraint with a linear loss
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Fair learning with kernels

I Linear model f (·) = 〈w , φ(·)〉, with φ : X → H a kernel-induced feature map

I For the linear loss, the fairness constraint takes the form
∣∣〈w , ua − ub〉

∣∣ ≤ ε̂, where
ug is the barycenter of the positive points in group g :

ug =
1

n+,g

∑
i :∈I+,g

φ(xi ), g ∈ {a, b}

I We consider the regularized empirical risk minimization problem

min
w∈H

n∑
i=1

`(yi 〈w , φ(xi )〉)+λ‖w‖2 s.t.
∣∣〈w , ua − ub〉

∣∣≤ε̂ λ > 0
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Form of the optimal classifier
[Chzhen et al. NeurIPS 2019]

Proposition. Let η(x , s) = E [Y |X = x ,S = s] be the regression function. If for each
s ∈ {0, 1} the mapping t 7→ P (η(X ,S) ≤ t |S = s) is continuous on (0, 1), then an
optimal classifier f ∗ can be obtained for all (x , s) ∈ Rd × {a, b} as

fθ(x , a) = 1{1≤η(x ,a)(2− θ
P(Y=1,S=a)

)}, fθ(x , b) = 1{1≤η(x ,b)(2+ θ
P(Y=1,S=b)

)}

where θ ∈ [0, 2] solves the equation

EX |S=a [η(X , a)fθ(X , a)]

P (Y = 1 |S = a)
=
EX |S=b [η(X , b)fθ(X , b)]

P (Y = 1 |S = b)
.

I Similar result when S is not included as a predictor

10



Leveraging labeled and unlabeled

I FERM leaves open the question of designing a computationally efficient and
statistically consistent estimator for problem (*)

I Alternative method: estimate η from a labeled sample and θ from an independent
unlabeled sample by minimizing the empirical difference of equal opportunity (DEO)

∆̂(f , µ) =

∣∣∣∣∣ ÊX |S=aη̂(X , a)fθ(X , a)

ÊX |S=aη̂(X , a)
−

ÊX |S=bη̂(X , b)fθ(X , b)

ÊX |S=bη̂(X , b)

∣∣∣∣∣
Theorem (informal). If η̂ → η as n→∞, under mild additional assumptions the
proposed estimator is consistent w.r.t. both accuracy and fairness:

lim
n,N→∞

E(Dn,DN)[∆(f̂ , µ)] = 0 and lim
n,N→∞

E(Dn,DN)[R(f̂ )] ≤ R(f ∗)
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Modified validation procedure

I In experiments, we employ a two steps 10-fold CV procedure:

– Step 1: shortlist all hyperparameters with accuracy above a certain percentage (we
choose 90%) of the best accuracy

– Step 2, from the list, select the hyperparameter with highest fairness (i.e. lowest DEO)

I We compare:

– Näıve SVM, validated with a standard nested 10-fold cross validation

– SVM with the novel validation procedure

– The method by [Hardt et al., 2016] applied to the best SVM

– The method [Zafar et al., 2017] (code provided by the authors for the linear case∗)

∗Python code: https://github.com/mbilalzafar/fair-classification
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Experiments

Comparison between different methods. DEO is normalized in [0, 1] column-wise. The closer a

point is to the origin, the better the result

The proposed methods slightly decrease accuracy while greatly improving in the fairness measure

Code: https://github.com/jmikko/fair_ERM
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Taking advantage of multitask learning
[Oneto et al. AIES 2019]

I We consider group specific models: f (x , s) = 〈ws , x〉
and a multitask learning (MTL) formulation

min
w1,...wk∈H

k∑
s=1

L̂s(ws) +
λ

k

k∑
s=1

‖ws − w0‖2 + (1− λ)‖w0‖2

I Regularization around a common mean encourages task
similarities

I We impose additional (linearized) fairness constraints on f
and the common mean

Left: Shared model trained with MTL, with fairness
constraint, and no sensitive feature in the predictors
vs. the group specific models trained with MTL,
with fairness constraint

Right: The latter models vs. the same models when
the sensitive feature is predicted via random forest
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Learning fair representations
[Oneto et al. Arxiv 2019]

I Now consider demographic parity: P(f (x) = 1|S = 0) = P(f (x) = 1|S = 1)

I Suppose f (x) = g(h(x)). If representation h : X → Rr is fair in the following sense

P(h(x) ∈ C |S = a) = P(h(x) ∈ C |S = b), ∀C ∈ Rr

then f is fair as well

I We relax this by requiring that both distributions have the same means.
We let c(z) the difference of the empirical means from a dataset z

I We use multiple tasks to learn h. We illustrate the approach in the linear case,
h(x) = A>x , and f (x) = b>h(x):

min
A,B

{
1

Tm

T∑
t=1

n∑
i=1

(
yt,i−〈bt ,A>xt,i 〉

)2
+
λ

2
‖A‖F‖B‖F

∣∣∣ A>c(zt) = 0, 1 ≤ t ≤ T

}
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Learning fair representations (cont.)

Theorem. Let A solve the above problem and ‖A‖F = 1. Let tasks µ1, . . . , µT be i.i.d. from a
meta-distribution ρ. Then, with probability at least 1− δ, the average risk of the algorithm with
representation A run on a random task is upper bounded

1

Tn

T∑
t=1

n∑
i=1

(
yt,i−〈bt ,A>xt,i 〉

)2
+ O

 1

λ

√
‖Ĉ‖∞

n

+ O

√ ln 1
δ

T


and the linearized fairness constraint is bounded as

Eµ∼ρEz∼µn‖Ac(z)‖2 ≤ 1

T

T∑
t=1

‖Ac(zt)‖2 + 96
ln 8T 2

δ

T
+ 6

√
‖Σ̂‖∞ ln 8T 2

δ

T

16



Experiments

M1: Standard MTL with the fairness constraints on the outputs
M2: Feed-forward neural network (FFNN) with adversarially generated representation [Madras et al. ICML 2018]

M3: Similar to M2 but with different loss function [Edwards &Storkey, ICLR 2016]
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From MTL to meta-learning†

From a sequence of tasks find an algorithm
which works well on unseen similar tasks

task 1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 · · ·
data 1 2 3 4 5 1 2 3 4 1 2 3 4 5 6 · · ·

I Previous work mainly focused on the batch statistical setting
[Baxter, 2000, Maurer, 2009, Pentina and Lampert, 2014, Maurer et al., 2016]

I Recent interest on online meta-learning:

• Online-within-online: both tasks and within-task data arrive online
[Alquier et al., 2017, Denevi et al., 2019, Khodak et al., 2019]

• Online-within-batch: tasks arrive online, their datasets in one batch
[Denevi et al., 2018a, Denevi et al., 2018b, Finn et al., 2019, Bullins et al., 2019]

I Also recent interest on meta-learning with deep neural networks, e.g.
[Ravi and Larochelle, 2017, Finn et al., 2017, Franceschi et al., 2018]

†Equivalent terminology: learning-to-learn or lifelong learning
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Meta-algorithm

A model for each task is learned by
an inner algorithm, which is
updated by a meta-algorithm as
the tasks are sequentially observed

I Desiderata: memory and time efficient, and supported by learning guarantees

I Difficulty: lack of a convex meta-objective
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Statistical and non-statistical settings

Let Zt = (xt,i , yt,i )
n
i=1 be the training sequence for the t-th task and let Z = (Zt)

T
t=1 be

the meta-sequence. We consider two settings‡

I Statistical setting [Baxter, 2000, Maurer, 2009]: the tasks are sampled from a
meta-distribution ρ and we wish to bound the average excess risk

EZEµ∼ρEµ(A(Z )) = EZ

[
Eµ∼ρ

[
EZ∼µn Rµ

(
A(Z )

)
− min

w∈Rd
Rµ(w)

]]
I Non-statistical setting: we wish to bound the normalized regret across the tasks

regret(A1, ...,AT )=
1

T

T∑
t=1

{
1

n

n∑
i=1

`
(
〈xt,i ,wt,i 〉, yt,i

)
− min

w∈Rd

1

n

n∑
i=1

`
(
〈xt,i ,w〉, yt,i

)}

‡See [Alquier et al., 2017] for a discussion
20



Regularizaton around a common mean – learning guarantees
[Denevi et al. ICML 2019; Denevi et al. NeurIPS 2019]

We assume `(·, y) L-Lipschitz for any y ∈ Y and the inputs are bounded. Let wµ be the
minimizer of the true risk for task µ

Vρ(θ) =
1

2
Eµ∼ρ‖wµ − θ‖2

2 θρ = argmin
θ∈Θ

Vρ(θ) = Eµ∼ρwµ

I Our method (from Thm. 2, tuning of λ and η)

EZ Eµ∼ρ Eµ
(
Aθ̄
)
≤ O

(√
Vρ(θρ)

n
+

√
1

T

)

I Best algorithm θ = θρ

Eµ∼ρ Eµ
(
Aθ
)
≤ O

(√
Vρ(θρ)

n

) I Indep. task learning (ITL) θ = 0

Eµ∼ρ Eµ
(
Aθ
)
≤ O

(√
Vρ(0)

n

)
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Experiment

Synthetic Data Lenk Dataset

Averaged test performance of different methods on synthetic (Left) and the Lenk dataset
(Right) as the number of training tasks incrementally increases.
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We are hiring!

Postdoc/Researcher positions at Istituto Italiano diTecnologia in Genoa to work with me

Send me an email if interested: massimiliano.pontil@iit.it
More info: http://tinyurl.com/MLPostDocIIT2019
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