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Context

Many subspace identification approaches require solving a composite optimization problem

min
x∈Rp
{F (x) := f(x) + ψ(x)},

where f is L-smooth and convex, and ψ is convex.

Two settings of interest

Particularly interesting structures in machine learning are

f(x) =
1

n

n∑
i=1

fi(x) or f(x) = E[f̃(x, ξ)].

Those can typically be addressed with

variants of SGD for the general stochastic case.

variance-reduced algorithms such as SVRG, SAGA, MISO, SARAH, SDCA, Katyusha. . .
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Basics of gradient-based optimization

Smooth vs non-smooth

(a) smooth (b) non-smooth

An important quantity to quantify smoothness is the Lipschitz constant of the gradient:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

If f is twice differentiable, L may be chosen as the largest eigenvalue of the Hessian ∇2f .
This is an upper-bound on the function curvature.
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Basics of gradient-based optimization

Convex vs non-convex

(a) non-convex (b) convex (c) strongly-convex

An important quantity to quantify convexity is the strong-convexity constant

f(x) ≥ f(y) +∇f(y)>(x− y) +
µ

2
‖x− y‖2,

If f is twice differentiable, µ may be chosen as the smallest eigenvalue of the Hessian
∇2f . This is a lower-bound on the function curvature.
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Basics of gradient-based optimization
Picture from F. Bach

Why is the condition number L/µ important?

Julien Mairal Stochastic Composite Optimization 6/24



Basics of gradient-based optimization
Picture from F. Bach

Trajectory of gradient descent with optimal step size.
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Variance reduction (1/2)

Variance reduction

Consider two random variables X,Y and define

Z = X − Y + E[Y ].

Then,

E[Z] = E[X]

Var(Z) = Var(X) + Var(Y )− 2cov(X,Y ).

The variance of Z may be smaller if X and Y are positively correlated.

Why is it useful for stochastic optimization?

step-sizes for SGD have to decrease to ensure convergence.

with variance reduction, one may use larger constant step-sizes.
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Variance reduction for smooth functions (2/2)

SVRG

xt = xt−1 − γ (∇fit(xt−1)−∇fit(y) +∇f(y)) ,

where y is updated every epoch and E[∇fit(y)|Ft−1] = ∇f(y).

SAGA

xt = xt−1 − γ
(
∇fit(xt−1)− yt−1it

+ 1
n

∑n
i=1 y

t−1
i

)
,

where E[yt−1it
|Ft−1] = 1

n

∑n
i=1 y

t−1
i and yti =

{
∇fi(xt−1) if i = it
yt−1i otherwise.

MISO/Finito: for n ≥ L/µ, same form as SAGA but

1
n

∑n
i=1 y

t−1
i = −µxt−1 and yti =

{
∇fi(xt−1)− µxt−1 if i = it
yt−1i otherwise.
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Complexity of SGD variants

We consider the worst-case complexity for finding a point x̄ such that E[F (x̄)− F ?] ≤ ε for

min
x∈Rp
{F (x) := E[f̃(x, ξ)] + ψ(x)},

In this talk, we consider the µ-strongly convex case only.

Complexity of SGD with iterate averaging

O

(
L

µ
log

(
C0

ε

))
+O

(
σ2

µε

)
,

under the (strong) assumption that the gradient estimates have bounded variance σ2.

Complexity of accelerated SGD [Ghadimi and Lan, 2013]

O

(√
L

µ
log

(
C0

ε

))
+O

(
σ2

µε

)
,
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Complexity for finite sums

We consider the worst-case complexity for finding a point x̄ such that E[F (x̄)− F ?] ≤ ε for

min
x∈Rp

{
F (x) :=

1

n

n∑
i=1

fi(x) + ψ(x)

}
,

Complexity of SAGA/SVRG/SDCA/MISO/S2GD

O

((
n+

L̄

µ

)
log

(
C0

ε

))
with L̄ =

1

n

n∑
i=1

Li.

Complexity of GD and acc-GD

O

((
n
L

µ

)
log

(
C0

ε

))
vs. O

((
n

√
L

µ

)
log

(
C0

ε

))
.

see also SDCA [Shalev-Shwartz and Zhang, 2014] and Catalyst [Lin et al., 2018].
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,

Complexity of SAGA/SVRG/SDCA/MISO/S2GD

O

((
n+

L̄

µ

)
log

(
C0

ε

))
with L̄ =

1

n

n∑
i=1

Li.

Complexity of Katyusha [Allen-Zhu, 2017]

O

n+

√
nL̄

µ

 log

(
C0

ε

) .

see also SDCA [Shalev-Shwartz and Zhang, 2014] and Catalyst [Lin et al., 2018].
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Contributions without acceleration

We extend and generalize the concept of estimate sequences introduced by Nesterov to

provide a unified proof of convergence for SAGA/random-SVRG/MISO.

provide them adaptivity for unknown µ (known before for SAGA only).

make them robust to stochastic noise, e.g., for solving

f(x) =
1

n

n∑
i=1

fi(x) with fi(x) = E[f̃i(x, ξ)].

with complexity

O

((
n+

L̄

µ

)
log

(
C0

ε

))
+O

(
σ̃2

µε

)
with σ̃2 � σ2,

where σ̃2 is the variance due to small perturbations.

obtain new variants of the above algorithms with the same guarantees.
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The stochastic finite sum problem

min
x∈Rp

{
F (x) :=

1

n

n∑
i=1

fi(x) + ψ(x)

}
with fi(x) = E[f̃i(x, ξ)],

Data augmentation on digits (left); Dropout on text (right).
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Contributions with acceleration

we propose a new accelerated SGD algorithm for composite optimization with
optimal complexity

O

(√
L

µ
log

(
C0

ε

))
+O

(
σ2

µε

)
,

we propose an accelerated variant of SVRG for the stochastic finite-sum problem with
complexity

O

n+

√
nL̄

µ

 log

(
C0

ε

)+O

(
σ̃2

µε

)
with σ̃2 � σ2.

When σ̃ = 0, the complexity matches that of Katyusha.
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A classical iteration

xk ← Proxηkψ [xk−1 − ηkgk] with E[gk|Fk] = ∇f(xk−1),

covers SGD, SAGA, SVRG, and composite variants.

Interpretation

xk minimizes the quadratic function dk, defined as

dk(x) = (1− δk)dk−1(x) + δk

(
f(xk−1) + g>k (x− xk−1) +

µ

2
‖x− xk−1‖2

. . .+ ψ(xk) + ψ′(xk)
>(x− xk)

)
,

where δk = µηk, ψ′(xk) is a subgradient in ∂ψ(xk), and d0(x) = d?0 + µ
2‖x− x0‖

2.

This is similar to the construction of estimate sequences by Nesterov.

see also [Devolder, 2011, Lin et al., 2014] for stochastic problems.
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A less classical iteration

xk = Proxψ/µ [x̄k] with x̄k ← (1− δk)x̄k–1 + δkxk − ηkgk and E[gk|Fk] = ∇f(xk–1),

covers MISO/Finito/primal SDCA with δk = µηk.

Interpretation

xk minimizes the function dk, defined as

dk(x) = (1 − δk)dk−1(x) + δk

(
f(xk−1) + g>k (x − xk−1) +

µ

2
‖x − xk−1‖2 + ψ(x)

)
.

With estimate sequences, convergence proofs for both types of iterations are identical.

Julien Mairal Stochastic Composite Optimization 16/24



Convergence results

General convergence result

if ηt ≤ 1/L for all t ≥ 0, then for all k ≥ 1,

E
[
F (x̂k)− F ? +

µ

2
‖xk − x?‖2

]
≤ Γk

(
F (x0)− F ? +

µ

2
‖x0 − x?‖2 +

k∑
t=1

δtηtσ
2
t

Γt

)
.

where Γk =
∏k
t=1(1− δt), x̂k = (1− δk)x̂k−1 + δkxk, and σ2t = E[‖gt −∇f(xt−1)‖2].
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An accelerated SGD algorithm

An algorithm derived from the estimate sequence method.

xk = Proxηkψ [yk−1 − ηkgk] with E[gk|Fk–1] = ∇f(yk–1)

yk = xk + βk(xk − xk–1) with βk =
δk(1− δk)ηk+1

ηkδk+1 + ηk+1δ
2
k

,

Interpretation

xk minimizes the quadratic function dk, defined as

dk(x) = (1− δk)dk−1(x) + δk

(
f(yk−1) + g>k (x− yk−1) +

µ

2
‖x− yk−1‖2

. . .+ ψ(xk) + ψ′(xk)
>(x− xk)

)
,

where δk = µηk, ψ′(xk) is a subgradient in ∂ψ(xk), and d0(x) = d?0 + µ
2‖x− x0‖

2.
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An accelerated SGD algorithm
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xk = Proxηkψ [yk−1 − ηkgk] with E[gk|Fk–1] = ∇f(yk–1)

yk = xk + βk(xk − xk–1) with βk =
δk(1− δk)ηk+1

ηkδk+1 + ηk+1δ
2
k

,

Complexity: acc-SGD with constant step size ηk = 1/L

E [F (xk)− F ?] ≤ 2

(
1−

√
µ

L

)k
(F (x0)− F ?) +

σ2√
µL

.

Note that the bias is larger than regular SGD by
√
L/µ.
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An accelerated SVRG algorithm for stochastic finite-sum problems

Choose the extrapolation point

yk–1 = θkvk–1 + (1− θk)x̃k–1;

Compute the noisy gradient estimator

gk = ∇̃fik(yk–1)− ∇̃fik(x̃k–1) + ∇̃f(x̃k–1);

Obtain the new iterate
xk ← Proxηkψ [yk–1 − ηkgk] ;

Find the minimizer vk of the estimate sequence:

vk = (1− δk) vk–1 + δkyk–1 +
δk
γkηk

(xk − yk–1);

Update the anchor point x̃k with prob 1/n.

Output xk (no averaging needed).
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An accelerated SVRG algorithm for stochastic finite-sum problems

Remarks

design of the algorithm and convergence proofs are based on estimate sequences.

with two stages, the algorithm achieves the optimal complexity

O

n+

√
nL̄

µ

 log

(
C0

ε

)+O

(
σ̃2

µε

)
with σ̃2 � σ2.
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A few experiments

0 50 100 150 200 250 300
Effective passes over data, Dataset alpha

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

lo
g(

F
/F

* -1
)

rand-SVRG 1/12L
rand-SVRG 1/3L
acc-SVRG 1/3L
SGD 1/L
SGD-d
acc-SGD-d
acc-mb-SGD-d 0 50 100 150 200 250 300

Effective passes over data, Dataset ckn-cifar

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

lo
g(

F
/F

* -1
)

`2-logistic regression on two datasets, with µ = 1/10n.

no big difference between the variants of SGD with decreasing step sizes;

variance reduction makes a huge difference.

acceleration helps on ckn-cifar.
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F
/F

* -1
)

`2-logistic regression on two datasets, with µ = 1/100n.

as conditioning worsens, the benefits of acceleration are larger.

accelerated SGD with mini-batches take the lead among SGD methods.
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A few experiments

0 50 100 150 200 250 300

Effective passes over data

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

lo
g
(F

/F
*
-1

)

rand-SVRG 1/12L

rand-SVRG 1/3L

acc-SVRG 1/3L

SGD 1/L

SGD-d

acc-SGD-d

acc-mb-SGD-d

0 50 100 150 200 250 300

Effective passes over data

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

lo
g
(F

/F
*
-1

)

SVM with squared hinge loss on two datasets, with µ = 1/10n.

here, gradients are potentially unbounded and accelerated SGD diverges!

accelerated SGD with mini-batches is stable and faster than SGD.
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Remark about accelerated SGD

It does not always work. Why?

the bounded noise variance assumption is not safe.

the accelerated algorithm with constant step size (which is used to forget the initial
condition) has much worth dependency in σ2 (see next slide).
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Convergence of SGD with ηt = 1/L

E[f(x̂t)− f?] ≤ 2
(

1− µ

L

)t
(f(x0)− f?) +

σ2

L
.

Convergence of accelerated SGD with ηt = 1/L

E[f(x̂t)− f?] ≤ 2

(
1−

√
µ

L

)t
(f(x0)− f?) +

σ2√
µL

.

Julien Mairal Stochastic Composite Optimization 24/24



Remark about accelerated SGD

It does not always work. Why?

the bounded noise variance assumption is not safe.

the accelerated algorithm with constant step size (which is used to forget the initial
condition) has much worth dependency in σ2 (see next slide).

Is it worthless?

removing the need for averaging is great for sparse problems.

with a mini-batch of size
√
L/µ, we obtain the same complexity as the unaccelerated

algorithm and the same stability w.r.t. σ2, and we can parallelize for free!
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References from this talk

The botany of incremental methods

SAG [Schmidt et al., 2017].

SAGA [Defazio et al., 2014a].

SVRG [Xiao and Zhang, 2014].

SDCA [Shalev-Shwartz and Zhang, 2014].

Finito [Defazio et al., 2014b].

MISO [Mairal, 2015].

S2GD [Konečnỳ and Richtárik, 2017].

SARAH [Nguyen et al., 2017].

MiG [Zhou et al., 2018].

Katyusha [Allen-Zhu, 2017].

Catalyst [Lin et al., 2018].

. . .
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Conclusion

The estimate sequence method is a generic tool, which can be applied to stochastic
optimization problems, including finite-sums.

We use it to develop and analyze algorithms without and with acceleration.

We discuss empirical findings regarding the stability of accelerated stochastic
algorithms.

. . . but stability issues can be fixed with mini-batching.
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