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Preliminaries on adversarial robustness

Definition of adversarial attacks

mA is trained and deployed (e.g the computer vision
system on a self-driving car)

mAt test / inference time, an attacker may submit queries to the
classifier by
@ sampling a real sample point x with true label k (e.g “pig"),
e modifying it x — x4 given to a prescribed

m Goal of attacker is to make classifier label x4 as # k (e.g
airliner)
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Preliminaries on adversarial robustness

The flying pig!

“pig” (91%) noise (NOT random) “airliner” (99%)

(Picture is courtesy of https: // gradientscience. org/ intro_adversarial/)

mx — x4 ;= x + noise , ||noise|| < & = 0.005 (in example above)

- : noise = sign(Vxloss(h(x),y))
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Preliminaries on adversarial robustness

FGSM for generating adversarial examples [Goodfellow '14]

t , epsilon):
.epsilon = epsilon

model, true_features, true_labels, loss_func=F.nll_loss):
= Variable(true_features, requires_grad=
= model forward(true features
= loss func(pred_labels, true_labels
= autograd grad(loss, trueifeatures retain_graph=
true_features + ,‘.epsilon * torch.sign(grad)

.,

mx — x* = clip(x + esign(Vloss(h(x), y)))
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Preliminaries on adversarial robustness

Adversarial attacks and defenses, an arms race!

Adversarial training

Goodfellow et al 2015

Multi-stage attacks
Kurakin et al, 2016
Tramer et al, 2017
MagNet
Optimization attacks
Carlini & Wagner ‘17 g i Thermometer Buckman'|8
> pDetection Maetal ‘I€

e P Compression Guo, ‘18
ation attacks
Approxim GANSs Samangouei, ‘18

Athalye et al, 2018
...and LOTS more

mImage courtesy of [Goldstein’ 19; Shafahi '19]
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Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

Classifier-dependent lower bounds

Problem setup

A is simply a Borel-measurable mapping h: X — Y from
feature space X’ (with metric d) to label space YV :={1,...,K}.

m A classifier is trained and deployed (e.g the computer vision
system on a self-driving car)

mAt test / inference time, an attacker may submit queries to the
classifier by sampling a real sample point x € X with true label

k € Y, and modifying it x — x®" according to a prescribed threat
model.
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Problem setup

A is simply a Borel-measurable mapping h: X — Y from
feature space X’ (with metric d) to label space YV :={1,...,K}.

m A classifier is trained and deployed (e.g the computer vision
system on a self-driving car)

mAt test / inference time, an attacker may submit queries to the
classifier by sampling a real sample point x € X with true label

k € Y, and modifying it x — x®" according to a prescribed threat
model.

@ For example, modifying a few pixels on a road traffic sign

o Modifying intensity of pixels by a limited amount determined
by a prescribed tolerance level , etc., on it.
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Problem setup
e No Free Lunch Theorems
Classifier-dependent lower bounds The Strong No Free Lunch Theorem

Corollaries

Problem setup: notations

(] acc(h|k) := 1 — err(h|k), where
err(hlk) := Px|x(h(X) # k) is the error of h on class k.
e Small acc(hlk) = h'is on class k.
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E acc(hlk) := 1 — err(h|k), where
err(h|k) := Px‘k(h(X) # k) is the error of h on class k.
e Small acc(hlk) = h'is on class k.
L] accc(hlk) := 1 — err-(hlk),

where errc(h|k) := Px(3x" € Ball(X;¢) | h(x") # k) is the
adversarial robustness error of h on class k.
e Small acc.(hlk) = his to attacks on class k.
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Problem setup: notations

E acc(hlk) := 1 — err(h|k), where
err(h|k) := Px‘k(h(X) # k) is the error of h on class k.
e Small acc(hlk) = h'is on class k.
L] accc(hlk) := 1 — err-(hlk),

where errc(h|k) := Px(3x" € Ball(X;¢) | h(x") # k) is the
adversarial robustness error of h on class k.

e Small acc.(hlk) = his to attacks on class k.
] d(h|k) := Ep, [d(X, B(h, k))] denotes
the average distance of a sample point of true label k, from the

error set B(h, k) := {x € X' | h(x) # k} of samples assigned to
another label.

e Small d(h|k) = his to attacks on class k.
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Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

Classifier-dependent lower bounds

A motivating example (from [Tsipras '18])

Consider the following classification problem:
] : Y ~ Bern(1/2,{£1}) based on p > 2
explanatory variables X := (X!, X2 ..., XP) given by
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A motivating example (from [Tsipras '18])

Consider the following classification problem:

] : Y ~ Bern(1/2,{£1}) based on p > 2
explanatory variables X := (X!, X2 ..., XP) given by
] XY =+Y w.p 70% and —Y w.p. 30%.
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Corollaries

A motivating example (from [Tsipras '18])

Consider the following classification problem:

] : Y ~ Bern(1/2,{£1}) based on p > 2
explanatory variables X := (X!, X2 ..., XP) given by

] XY =+Y w.p 70% and —Y w.p. 30%.
n XY ~N(nY,1),forj=2,...,p,

where 17 ~ p~1/2 s a fixed scalar which controls the difficulty.
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Corollaries

A motivating example (from [Tsipras '18])

Consider the following classification problem:

] : Y ~ Bern(1/2,{£1}) based on p > 2
explanatory variables X := (X!, X2 ..., XP) given by

] XY =+Y w.p 70% and —Y w.p. 30%.
n XY ~N(nY,1),forj=2,...,p,

where 17 ~ p~1/2 s a fixed scalar which controls the difficulty.

The linear classifier hj,(x) = sign(w ' x) with
w=(0,1/p,...,1/p), where we allow ¢,-perturbations of
maximum size € > 21, (100%
accuracy) but its !
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Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

Classifier-dependent lower bounds

The of the classifier writes

acc(h“n) = P(X,Y) (h“n(X) = Y) =P <YWTX > 0)
=Py | (Y/(pP—1)) ) N(Y,1) =20

0) =P(N(0,1/(p—1)) = —n)
<n)>1- e—(P—l)ﬁz/Q’
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Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

Classifier-dependent lower bounds

The of the classifier writes

acc(h“n) = P(X,Y) (h“n(X) = Y) =P <YWTX > 0)

=Py | (Y/(P—1))D_N(nY,1)>0

Jj=2
=PN(n,1/(p—1)) 2 0) =P(N(0,1/(p— 1)) = —n)
=PNO.1/(p-1) <n) 21— PIT,
which is > 1 —§ if n > \/2log(1/5)/(p — 1).

m — hj, is quasi-perfect!
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Problem setup

No Free Lunch Theorems
The Strong No Free Lunch Theorem
Corollaries

Classifier-dependent lower bounds

the of hj;, writes
acce(hin) := P(x,y) (Yhin(X + Ax) > 0 V|| Ax[l <€)

= ]P)(X,Y) < inf YWT(X + AX) > 0>

[Ax[loo<e

=Py | YW X— sup Yw Ax>0
|Ax]loo <o

=PWN(0,1/(p—1)>ec—n) < e (p—1)(e=n)*/2.
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Problem setup
Classifier-dependent lower bounds Mo e Lmelh VliEaieims

The Strong No Free Lunch Theorem
Corollaries

the of hyji, writes

acce(hin) := P(x,y) (Yhin(X + Ax) > 0 V|| Ax[l <€)
= ]P)(X,Y) < inf YWT(X + AX) > 0>

[Ax[loo<e

=Py | YW X— sup Yw Ax>0
|Ax]loo <o

=PWN(0,1/(p—1)>ec—n) < e (p—1)(e=n)*/2.

Thus acce(hin) < d for e > 1+ +/2log(1/8)/(p — 1).
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Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

Classifier-dependent lower bounds

the of hj;, writes
acce(hin) := P(x,y) (Yhin(X + Ax) > 0 V|| Ax[l <€)

= ]P)(X,Y) < inf YWT(X + AX) > 0>

[Ax[loo<e

=Py | YW X— sup Yw Ax>0
|Ax]loo <o

=PWN(0,1/(p—1)>ec—n) < e (p—1)(e=n)*/2.
Thus acc.(hin) < 6 for & > n+ +/2log(1/6)/(p — 1).

m That is, the of hy, is close to !

Elvis Dohmatob Limits on Robustness to Adversarial Examples — slide 13 / 41



Problem setup
e No Free Lunch Theorems
Classifier-dependent lower bounds The Strong No Free Lunch Theorem

Corollaries

What could be going on ? [Intuition from Tsipras and co.]

] © Y ~Bern(1/2,{+£1})
" XYY =+Y w.p 70% and —Y w.p. 30%.
m Non-robust features: X/ | Y ~ N(nY,1),for j=2,...,p

aggregates to a very accurate (but non-robust!) “meta-feature”
Strong (but not perfect) )

correlation \m

N T ]
Weak correlation

Elvis Dohmatob Limits on Robustness to Adversarial Examples — slide 14 / 41



Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
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Classifier-dependent lower bounds

What could be going on ? [Intuition from Tsipras and co.]

] © Y ~Bern(1/2,{+£1})
" XYY =+Y w.p 70% and —Y w.p. 30%.
m Non-robust features: X/ | Y ~ N(nY,1),for j=2,...,p

aggregates to a very accurate (but non-robust!) “meta-feature”
Strong (but not perfect) )

correlation \m

p— ]

Y
Weak correlation

mBTW, we note that an optimal adversarial attack can be done by
taking Ax! =0 and Ax/ = —ey forall j =2,...,p.
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What could be going on ? [Intuition from Tsipras and co.]

] © Y ~Bern(1/2,{+£1})
" XYY =+Y w.p 70% and —Y w.p. 30%.
m Non-robust features: X/ | Y ~ N(nY,1),for j=2,...,p

aggregates to a very accurate (but non-robust!) “meta-feature”
Strong (but not perfect) )

correlation \m

p— ]

Y
Weak correlation

mBTW, we note that an optimal adversarial attack can be done by
taking Ax! =0 and Ax/ = —ey forall j =2,...,p.

Basic intuition:

mIn standard training, all correlation is good correlation
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What could be going on ? [Intuition from Tsipras and co.]

] © Y ~Bern(1/2,{+£1})
m XYY =+Y w.p 70% and —Y w.p. 30%.
m Non-robust features: X/ | Y ~ N(nY,1),for j=2,...,p

aggregates to a very accurate (but non-robust!) “meta-feature”
Strong (but not perfect) )

correlation \m

p— ]

Y
Weak correlation

mBTW, we note that an optimal adversarial attack can be done by
taking Ax! =0 and Ax/ = —ey forall j =2,...,p.

Basic intuition:

mIn standard training, all correlation is good correlation

mIf we want robustness, must

@ —> learn ?
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Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

BTW, humans are not " perfect”

Classifier-dependent lower bounds

Roberto Toro @R3RTO - 23 avr.
. optical illusions are more like

=g(‘, Lionel Page @page_eco - 8 mars
Is it a duck or a rabbit?

Google Cloud Vision's algorithm has the same optical illusion than you
and me. It sees one or the other, depending on how the image is rotated.

ht @minimaxir

Duck or Rabbit?

Duck

e _

oty

Elvis Dohmatob



Problem setup
No Free Lunch Theorems

Classifier-dependent lower bounds The Strong No Free Lunch Theorem

Corollaries

Talagrand transportation-cost inequality

The T,(c) property
Given ¢ > 0, a distribution p on X is said to satisfy To(c) if for
every distribution v on X with v < u, one has

Wa(v, 1) < v/2cKi(v| ), (1)

where ki(v||p) := [ log(dv/du)dp, entropy of v relative to 4.

Elvis Dohmatob Limits on Robustness to Adversarial Examples — slide 16 / 41



Problem setup

No Free Lunch Theorems
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Corollaries

Classifier-dependent lower bounds

Talagrand transportation-cost inequality

The T,(c) property

Given ¢ > 0, a distribution p on X is said to satisfy To(c) if for
every distribution v on X with v < u, one has

Wa(v, 1) < v/2cKi(v| ), (1)

where ki(v||p) := [ log(dv/du)dp, entropy of v relative to 4.

m Generalizes the well-known for the total
variation distance between probability measures (take 2c = 1/2).
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Classifier-dependent lower bounds

Talagrand transportation-cost inequality

The T,(c) property

Given ¢ > 0, a distribution p on X is said to satisfy To(c) if for
every distribution v on X with v < u, one has

Wa(v, 1) < v/2cKi(v| ), (1)

where ki(v||p) := [ log(dv/du)dp, entropy of v relative to 4.
m Generalizes the well-known for the total
variation distance between probability measures (take 2c = 1/2).

m Unlike Pinsker's inequality which holds unconditionally, the
inequality To(c) is a privilege only enjoyed by special classes of
reference distributions p.
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Problem setup
No Free Lunch Theorems

Classifier-dependent lower bounds The Strong No Free Lunch Theorem

Corollaries

BLOWUP / aka concentration of measure

The BLOWUP(c) property
u is said to satisfy BLOWUP(c) if for every Borel B C X with
wu(B) > 0 and for every € > \/2clog(1/u(B)), it holds that

(BF) > 1 — e~ 2c(e=V/2clog(1/u(B)))? 2)
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No Free Lunch Theorems
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Classifier-dependent lower bounds

BLOWUP / aka concentration of measure

The BLOWUP(c) property

u is said to satisfy BLOWUP(c) if for every Borel B C X with
wu(B) > 0 and for every € > \/2clog(1/u(B)), it holds that

(BF) > 1 — e~ 2c(e=V/2clog(1/u(B)))? 2)

mlt is a classical result that the Gaussian distribution on RP has
BLOWUP(1) and T»(1), a phenomenon known as

@ These result dates back to works of Borel, Lévy, Talagrand
and of Marton (see textbook)
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Problem setup
. No Free Lunch Theorems
Classifier-dependent lower bounds The Strong No Free Lunch Theorem

Corollaries

Marton's Blowup lemma

Lemma (Marton’s BLOWUP Lemma)
On a metric space, it holds that T,(c) C BLOWUP(c).
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Marton's Blowup lemma

Lemma (Marton’s BLOWUP Lemma)
On a metric space, it holds that T,(c) C BLOWUP(c).

Proof. : kI(ulll1e) = log(1/u(B)) , where u|g(A) := &5
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Lemma (Marton’s BLOWUP Lemma)
On a metric space, it holds that T,(c) C BLOWUP(c).
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Proof.  kl(ulgl|lp) = log(1/u(B)) , where u|g(A) := (B)
Thus & < Wa(ulg, prang=) < Waluls, 1) + Walplx\ge, 1)
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Marton's Blowup lemma

Lemma (Marton’s BLOWUP Lemma)
On a metric space, it holds that T,(c) C BLOWUP(c).

Proof. : Ki(ulgllp) = log(1/u(B)) , where ulg(A) == ="
Thus e < Wa(ulg, pa\ge) < Waluls, 1) + Wa(plx\se, 1t)
2¢ Ki(ulglln) + ¢2ckl (1l a\ge 1)
< /2clog(1/u(B)) + v/2clog(1/u(X \ B?))
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Marton's Blowup lemma

Lemma (Marton’s BLOWUP Lemma)
On a metric space, it holds that T,(c) C BLOWUP(c).

Proof. : Ki(ulgllp) = log(1/u(B)) , where ulg(A) == ="
Thus e < Wa(ulg, pa\ge) < Waluls, 1) + Wa(plx\se, 1t)
2¢ Ki(ulglln) + ¢2ckl (1l a\ge 1)
< /2clog(1/u(B)) + v/2clog(1/u(X \ B?))
= \/2c|og (1/u(B)) + \/2clog (1/(1 — u(B?)).

Elvis Dohmatob Limits on Robustness to Adversarial Examples — slide 18 / 41



Problem setup
. No Free Lunch Theorems
Classifier-dependent lower bounds The Strong No Free Lunch Theorem

Corollaries

Marton's Blowup lemma

Lemma (Marton’s BLOWUP Lemma)
On a metric space, it holds that T,(c) C BLOWUP(c).

Proof. Fact: ki(jlg 1) = log(1/u(B)) , where ju|g(A) := “A78),
Thus e < Wa(ulg, pa\ge) < Waluls, 1) + Wa(plx\se, 1t)
2¢ Ki(ulglln) + ¢2ckl (1l a\ge 1)
< /2clog(1/u(B)) + v/2clog(1/u(X \ B?))
= /2clog(1/pu(B)) + /2clog(1/(1 — pu(B?)).
Rearranging the above mequahty gives
V/2clog(1/(1— ju(B)) > (¢ — /2clog(1/u(B)))-
and the result follows after squaring & exponentiating. Ol
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Problem setup
No Free Lunch Theorems
The Strong No Free Lunch Theorem

Corollaries

Classifier-dependent lower bounds

Adversarial attacks are a 'butterfly effect’ on data manifold

] : B(h,k) = {x € X | h(x) # k}, h = classifier
" : B(h,k)F :={x e X |d(x,B(hk)) <e}

B(h, k)¢
B(h, k)

merr(h|k) := Px(B(h, k)) >0 if his on class k.

m Consequence is that acc.(h|k) ~\, 0 expo. fast as function of ¢.
(]

m Manuscript: https://arxiv.org/pdf/1810.04065.pdf


https://arxiv.org/pdf/1810.04065.pdf

Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

Strong No Free Lunch Theorem

Classifier-dependent lower bounds

Theorem (Strong “No Free Lunch” [Dohmatob '18])

Suppose that conditional distribution Py, has the Tx(o7)
property. Given a classifier h : X — Y such that err(h|k) > 0,
define e(h|k) := oy+/2log(1/ err(h|k)). Then we have the
following bounds:

(A) : ife > e(hlk), then

—%(E—E(h\k))2

accc(hlk) <e

(3)
(B)

d(hlk) < o (v/1og(t/ err(hlK)) + /7 /2) (4)
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Problem setup
No Free Lunch Theorems
The Strong No Free Lunch Theorem

Corollaries

Classifier-dependent lower bounds

mUse Marton's Lemma: BLOWUP(02) C To(02) with
B := B(h,k) :=={x € X | h(x) # k} and p = Px|x. O
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Problem setup
e No Free Lunch Theorems
Classifier-dependent lower bounds The Strong No Free Lunch Theorem

Corollaries

Corollary (Strong “No Free Lunch” Theorem on flat space)

Let 1 < q < co. Define eq(h|k) := e(h|k)p*/9=Y/2. If in addition
to the assumptions of Strong No Free Lunch Theorem, and
suppose the feature space is flat, i.e Ricy = 0, then for the {4
threat model, we have the following bounds:
(A1) : ife > €q(hlk), then
1-2/q

— P (e—eq(h|k))?
e (hli) < & EmetH?

(5)
(A2)

d(hlk) < oxp™ 972 (\Vlog(1/ert(IK)) + V/7/2) . (6)

m Note that the case g = 1 is a proxy for “few-pixel” attack models
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Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

Classifier-dependent lower bounds

Strong No Free Lunch Theorem

Corollary (Strong NFLT for /., attacks [Dohmatob '18])

In particular, for the ¢, threat model, we have the following

bounds:
(B1) : If e > e(hlk)/\/p, then
— L5 (e—e(h|k 2
acc.(hlk) < e 22" CHONVER (7)
(B2)

d(hlk) <

< 7’: <\/Iog 1/ err(hlk)) + \/77/2) (8)

Elvis Dohmatob Limits on Robustness to Adversarial Examples — slide 23 / 41



Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

Classifier-dependent lower bounds

Special cases of our results

m Log-concave distribs dPx, o e~ () dx satisfying Emefy-Bakry
curvature condition: Hess,(vk) + Ricx(X) = (1/02)1,

@ e.g multi-variate Gaussian (considered in

)

m Perturbed log-concave distribs (via Holley-Shroock Theorem)

m The uniform measure on compact Riemannian manifolds of
positive Ricci curvature, e.g spheres (considered in ),
tori, or any compact Lie group.

m Pushforward via a Lipschitz function f, of a distribution in
To(0?). Indeed, take 6% = ||f||Lipok-

metc.
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Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

Classifier-dependent lower bounds

Worked example: Adversarial spheres [Gilmer "18]
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Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

Classifier-dependent lower bounds

Worked example: Adversarial spheres [Gilmer "18]

mY ~ Bern(1/2,{£}),

m X |k ~ uniform(S% ), where
k
R+ > R_>0.

le?k is a compact Riemannian manifold
with constant Ricci curvature (p — 1)R, 2.

m Thus Py satisfies To(RZ/(p — 1)).
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Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

Classifier-dependent lower bounds

Worked example: Adversarial spheres [Gilmer "18]

mY ~ Bern(1/2,{£}),

m X |k ~ uniform(S% ), where
k
R+ > R_>0.

le?k is a compact Riemannian manifold
with constant Ricci curvature (p — 1)R, 2.

m Thus Py satisfies To(RZ/(p — 1)).

R
vp—1
~ —& “(acc(hlk

7p (acc(hlk)

 Exk[dgeo(X, B(h, k))] < (V'2log(1/err(h|k)) + v/7/2)
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Problem setup

No Free Lunch Theorems

The Strong No Free Lunch Theorem
Corollaries

Classifier-dependent lower bounds

Worked example: Adversarial spheres [Gilmer "18]

mY ~ Bern(1/2,{£}),

m X |k ~ uniform(S% ), where
k
R+ > R_>0.

le?k is a compact Riemannian manifold
with constant Ricci curvature (p — 1)R, 2.

m Thus Py satisfies To(RZ/(p — 1)).

R
vp—1
~ —& “(acc(hlk

7p (acc(hlk)

 Exk[dgeo(X, B(h, k))] < (V'2log(1/err(h|k)) + v/7/2)

m This is the same bound obtained in “manually”
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2tup
Lunch Theorems

Classifier-dependent lower bounds The Strong No Free Lunch Theorem

Corollaries

Some empirical confirmation

— standard acc(h) =@= adversarial acc.(h)
= = 1 —acc(h) e predicted bound

1.0 SNR (n) = 3 SNR(n)=2_

elew(h)

m Phase-transition occurs as predicted by our theorems
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Problem setup
No Free Lunch Theorems
The Strong No Free Lunch Theorem

Classifier-dependent lower bounds

Corollaries
Key papers
] There is no free lunch in adversarial robustness
| Adversarial spheres
] Adversarial vulnerability for any classifier
[ Obfuscated Gradients Give a False Sense of

Security: Circumventing Defenses to Adversarial Examples

] Generalized No Free Lunch Theorem for
Adversarial Robustness

[ Are adversarial examples inevitable?
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Link between adversarial examples and optimal transport

. / rially robust learning via adversarially nented data
Universal lower bounds

Universal lower bounds
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Link between adv >xamples and optimal transport

. Adversarially robu adversarially augmented data
Universal lower bounds

Overview

m Previous bounds make very strong
assumptions on both the data and the classifier (e.g the theory
fails for perfect classifiers)

m It would be nice to have bounds which only depend on
the geomtry of the class-conditional distributions P, and P_

m This is very very recent work, started by (to appear
in NeurlPS!)

m My own work builds on as is still largely ongoing
(AISTATS 777)

References

n Lower Bounds on Adversarial Robustness from
Optimal Transport
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Link between adversarial examples and optimal transport

. Adversarially robust learning via adversarially augmented data
Universal lower bounds >

Abstract view of adversarial attacks

mThe X is an abstract measure space, and the
target space is {£1} (binary classification). E.g X = (RP, Borell).

mlet P be an unknown probability distribution on the product
space X' x {£1}.

mA is any measurable function h: X — {+1}.

mAn A is the prescription of a closed neighborhood
A, for each point x of X. E.g A, = Bally__(x;&). The case
Ay, = {x} Vx € X corresponds to the attackless model.

A is any measurable function a: X x {£1} - X
such that a(x,y) € A, ¥(x,y) € X x {£1}. With abuse of
notation, we'll also write a € A. E.g a(x, y) := x — yz for some
fixed z € Bally(0; ¢).
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Link between adversarial examples and optima sport

. Adversarially robust learning via adversarially ented data
Universal lower bounds

Abstract view of adversarial attacks

mThe of h to type-A attacks is
erra(h) := Exy)op[3x € A st h(X') # y] (9)

mThe for type-A attacks is
err’y == ir;f erra(h) (10)
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Link between adversari

Universal lower bounds

The flying pig example again!

“pig” (91%) noise (NOT random)

£ SN

(Picture is courtesy of https: // gradientscience. org/intro_adversarial/)

mx — x4V

X = R#PXels A — Ball,__(x;0.005)

is Dohmatob Limits on Robus

“airliner” (99%)

:= x + noise , ||noise| < e =0.005 (in example above)
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Link between adversarial examples and optimal transport

. Adversarially robust learning via adversarially augmented data
Universal lower bounds

Adversarial attacks as optimal transport [Bhagoji '19]

Given a classifier h, consider the derived classifier h: X — {£1}

y, ifdye{£l} st h(xX)=yVx € A, (1)

1, else.
P‘—J P\
X
h(z) = -1 h(z) =1
Py_, Py,
X
h(z)=—-1 h(z)=1 h(z)=1
V=1 7
[/
0 g

Elvis Dohmatob Limits on Robustness to Adversarial Examples — slide 33 /41



Link between adversarial examples and optim.
Adversarially robust learning via adversarially ented data

Universal lower bounds

Adversarial attacks as optimal transport [Bhagoji '19]

Given a classifier h, consider the derived classifier h: X — {£1}

y, ifdye{£l} st h(xX)=yVx € A,

1, else.

(11)

m Define the transport ground-cost

{1, if AyN Ay =0,

h{z)=-1 hiz) =1 07 E|Sev

o X/’x
x

h(z)=—-1 h(z)=1 h(z)=1
i

g
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Link between adversarial examples and optimal transport
Adversarially robust learning via adversarially ented data

Universal lower bounds

Adversarial attacks as optimal transport [Bhagoji '19]

Given a classifier h, consider the derived classifier h: X — {£1}

(x) = y, ifdye{£l} st h(xX)=yVx € A,
o 1, else.

h (11)

m Define the transport ground-cost

ca(x,x') = {1’ A A =D,

h{z)=-1 hiz)=1 07 E|Sev
v s X/’N and note that Vx, x’ € X, one has
hiz) = — h(z) = h(z) = . . /
. h(zr) = -1 H_.z_)f 1L h(z)=1 l{h(x):1}+]l{h(x):—l} S CA(X, X )+1,
0 L= mie f(x) — g(x') < ca(x, x).
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Link between adversarial examples and optimal transport

. Adversarially robust learning via adversarially augmented data
Universal lower bounds

Adversarial attacks as optimal transport [Bhagoji '19]

e Px, , 1, fANAC=0,
® mca(x,x') =
h(x)=—1 h(z)=1 0, else,
. P Pa mfh(x) — gn(x') < calx,x') Vx,x' € X,
) = o1 A =L hE =1 and so (fy, gp) is a pair of Kantorovich
! I potentials for OT with ground-cost c4.
g
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Link between adversarial examples and optim.
Adversarially robust learning via adversarially ented data

Universal lower bounds

Adversarial attacks as optimal transport [Bhagoji '19]

1, fANAs =0,

mcg(x,x') = {

h(x)=—1 h(z)=1 0, else,
LN TN wh(x) - anlX) < calxox) Vxo X € X,
) = o1 A =L hE =1 and so (fy, gp) is a pair of Kantorovich
! r potentials for OT with ground-cost c4.
0 g
L OTe, (P, Py) = sup  Ep [o(x)] - Ep, [{(x)]

K —potentials ¢,
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Link between adversarial examples and optimal transport
Adversarially robust learning via adversarially ented data

Universal lower bounds

Adversarial attacks as optimal transport [Bhagoji '19]

1, fANAs =0,

mcg(x,x') = {

h(x)=—1 h(z)=1 0, else,
LN TN wh(x) - anlX) < calxox) Vxo X € X,
) = o1 A =L hE =1 and so (fy, gp) is a pair of Kantorovich
! r potentials for OT with ground-cost c4.
0 g
L OTe, (P, Py) = sup  Ep [o(x)] - Ep, [{(x)]

K —potentials ¢,
> sup [21 ()] = Ep, [fa(x)]
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Link between adversarial examples and optimal transport
Adversarially robust learning via adversarially augmented data

Universal lower bounds

Adversarial attacks as optimal transport [Bhagoji '19]

1, fANAs =0,

mcg(x,x') = {

h(x)=—1 h(z)=1 0, else,
LN TN wh(x) - anlX) < calxox) Vxo X € X,
) = o1 A =L hE =1 and so (fy, gp) is a pair of Kantorovich
! r potentials for OT with ground-cost c4.
0 g
L OTe, (P, Py) = sup  Ep [o(x)] - Ep, [{(x)]

K —potentials ¢,
> sup [21 ()] = Ep, [fa(x)]

=sup2(l—errg(h))—1=1—err}y
h
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Link between adversarial examples and optimal transport

. Adversarially robust learning via adversarially augmented data
Universal lower bounds =

Universal lower bound on adversarial robustness error

Theorem ([Bhagoji '19])

Given an attack model A, let OT 4(P4, P_) be the

distance between the +ve and -ve class-conditonal
distributions of the samples, with the ground cost given by
ca(x,x") = Lya,na,,—0y- Then we have he following lower bound
on the classification error against A-attacks

err’y > ;(1 — OT4(P+,P-)) (12)

mIn particular, for the where A, = {x} Vx € X,
one has c4(x,x’) = Lyxe and so OT4(Py,P_) = TV(P,,P-).
The theorem then reduces to the following well-known result

%(1 — TV(P,,P_)). (13)
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Link between adversarial examples and optimal transport
. Adversarially robust learning via adversarially augmented data
Universal lower bounds Y € Y aug

Total-Variational reformulation of the bounds

Theorem ([Dohmatob "20 7| / ongoing work)
mLet A be an attack, and for a € A define ay(x) := a(x, +1).
Define Q := {(x,x') € X2 | AxN A # 0}, and
TVA(P_,P.) = inf TV(a_ P, as,P
A( ) +) algA (a #T—5 a4 +)7

— . j . (14)
TVA(P-. Py) = inf TV(pro71, Projs 472).

where the inf is taken over all distributions on X' which are
concentrated on €0 s.t proj; v1 = P— and proj, ,y2 = Py. Then,

OTA(P_,P.) = TV A(P_,P,) < TVA(P_, P,), (15)

and there is equality if P_ and P have densities w.r.t Lebesgue.

mAbove bound suggest that rather than doing adversarial training,
we'd rather do normal training on adversarially augmented data!



Link between adversarial examples and optimal transport

. Adversarially robust learning via adversarially augmented data
Universal lower bounds Yy L3 y aug

Worked example: hierarchical Gaussian classification

(Example from )
a i~ N0, 1p), y ~ Ber({£L}), XI(Y = y) ~ Ny, a?1y),

m Consider the {,-norm attack model A give by A, = Ball,_ (x; ¢).

mGiven n samples S, = {(x1,y1),. .., (Xn, yn)} from this model,
how small can the robust error of a classifier be 7

m More precisely, lets bound

o) inf Es,npBj s,y lerralhn; m)], (16)

where errA(/A7,,; ) is the adversarial robust error of h,, defined by

errA(i:'n; :u) = EyNBern({:l:l})EXNN(yu,azlp)[Elxl €A st BH(X,) # y]'
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Link between adversarial examples and optimal transport

. Adversarially robust learning via adversarially augmented data
Universal lower bounds Yy L3 y aug

Worked example: hierarchical Gaussian classification

~

errA(hn; /1,) = ]EywBern({il})]Ewa(yy,o'zlp)[Elxl € Ay st I,:’n(X/) a y]

mThe posterior distribution of the model parameter is N(fi,, 52),

with 52 = U2+ ,and i, = X with X = PPy

errq(hn) = i?'ferrA(h;/an,c?%) > ...

1 . N N " A
> EHESn§ <1 — inf TV(N(—fin + 2,62), N (fin — 2,62))

lzllo<e /

D, N
> 85,0 (Y218l — )+ ) 2 EuBs Bl < 2)0(0)

N 1 n
~ §Pu~N(0,I,,) m”““oo <e
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Link between adversarial examples and optimal transport

. Adversarially robust learning via adversarially augmented data
Universal lower bounds Yy L3 y aug

Worked example: hierarchical Gaussian classification

mThus, if n <3 and so

n £
siogt@) then 75 < 55y

. 1 n
e n 2 SPun(or) (WHU\M < 8)
1

> ZPunion) (lulloe < 2v/210g(d))
1 | : :
> 5(1 —1/d) = 5 in high dimensions!
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Link between adversarial examples and optimal transport

. Adversarially robust learning via adversarially augmented data
Universal lower bounds Yy L3 y aug

Main references

] Generalized No Free Lunch Theorem for
Adversarial Robustness
] Lower Bounds on Adversarial Robustness from

Optimal Transport
There is no free lunch in adversarial robustness
Adversarial spheres
Explaining and harnessing adversarial examples
One pixel attack for fooling deep neural networks
Adversarial vulnerability for any classifier
Obfuscated Gradients Give a False Sense of
Security: Circumventing Defenses to Adversarial Examples
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Link between adversarial examples and optimal transport

. Adversarially robust learning via adversarially augmented data
Universal lower bounds Yy L3 y aug

Questions ?
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