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Definition of adversarial attacks

A classifier is trained and deployed (e.g the computer vision
system on a self-driving car)

At test / inference time, an attacker may submit queries to the
classifier by

sampling a real sample point x with true label k (e.g “pig”),

modifying it x 7→ xadv given to a prescribed threat model.

Goal of attacker is to make classifier label xadv as 6= k (e.g
airliner)
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The flying pig!

(Picture is courtesy of https: // gradientscience. org/ intro_ adversarial/ )

x 7→ xadv := x + noise , ‖noise‖ ≤ ε = 0.005 (in example above)
Fast Gradient Sign Method: noise = sign(∇x loss(h(x), y))
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FGSM for generating adversarial examples [Goodfellow ’14]

x 7→ xadv := clip(x + εsign(∇x loss(h(x), y)))
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Adversarial attacks and defenses, an arms race!

Image courtesy of [Goldstein’ 19; Shafahi ’19]
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Problem setup

A classifier is simply a Borel-measurable mapping h : X → Y from
feature space X (with metric d) to label space Y := {1, . . . ,K}.

A classifier is trained and deployed (e.g the computer vision
system on a self-driving car)

At test / inference time, an attacker may submit queries to the
classifier by sampling a real sample point x ∈ X with true label
k ∈ Y, and modifying it x 7→ xadv according to a prescribed threat
model.

For example, modifying a few pixels on a road traffic sign
[Su et al. ’17]

Modifying intensity of pixels by a limited amount determined
by a prescribed tolerance level [Tsipras ’18], etc., on it.
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Problem setup: notations

Standard accuracy: acc(h|k) := 1− err(h|k), where
err(h|k) := PX |k(h(X ) 6= k) is the error of h on class k .

Small acc(h|k) =⇒ h is inaccurate on class k .

Adversarial robustness accuracy: accε(h|k) := 1− errε(h|k),
where errε(h|k) := PX |k(∃x ′ ∈ Ball(X ; ε) | h(x ′) 6= k) is the
adversarial robustness error of h on class k .

Small accε(h|k) =⇒ h is vulnerable to attacks on class k .

Distance to error set: d(h|k) := EPX |k [d(X ,B(h, k))] denotes
the average distance of a sample point of true label k, from the
error set B(h, k) := {x ∈ X | h(x) 6= k} of samples assigned to
another label.

Small d(h|k) =⇒ h is vulnerable to attacks on class k .
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A motivating example (from [Tsipras ’18])

Consider the following classification problem:
Prediction target: Y ∼ Bern(1/2, {±1}) based on p ≥ 2

explanatory variables X := (X 1,X 2, . . . ,X p) given by

Robust feature: X 1 | Y = +Y w.p 70% and −Y w.p. 30%.

Non-robust features: X j | Y ∼ N (ηY , 1), for j = 2, . . . , p,
where η ∼ p−1/2 is a fixed scalar which controls the difficulty.

The linear classifier hlin(x) ≡ sign(wT x) with
w = (0, 1/p, . . . , 1/p), where we allow `∞-perturbations of
maximum size ε ≥ 2η, solves the problem perfectly (100%
accuracy) but its adversarial robustness is zero!
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Proof.

The standard accuracy of the classifier writes

acc(hlin) := P(X ,Y ) (hlin(X ) = Y ) = P
(
YwTX ≥ 0

)
= PY

(Y /(p − 1))
∑
j≥2

N (ηY , 1) ≥ 0


= P (N (η, 1/(p − 1)) ≥ 0) = P (N (0, 1/(p − 1)) ≥ −η)

= P (N (0, 1/(p − 1)) ≤ η) ≥ 1− e−(p−1)η2/2,

which is ≥ 1− δ if η ≥
√

2 log(1/δ)/(p − 1).

=⇒ hlin is quasi-perfect!
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Proof.

the adversarial robustness accuracy of hlin writes

accε(hlin) := P(X ,Y ) (Yhlin(X + ∆x) ≥ 0 ∀‖∆x‖∞ ≤ ε)

= P(X ,Y )

(
inf

‖∆x‖∞≤ε
YwT (X + ∆x) ≥ 0

)
= P(X ,Y )

(
YwTX − sup

‖∆x‖∞≤ε
YwT∆x ≥ 0

)
= P(X ,Y )

(
YwTX − ε‖Yw‖1 ≥ 0

)
= P(X ,Y )

(
YwTX − ε ≥ 0

)
= P(N (0, 1/(p − 1)) ≥ ε− η) ≤ e−(p−1)(ε−η)2/2.

Thus accε(hlin) ≤ δ for ε ≥ η +
√

2 log(1/δ)/(p − 1).

That is, the adversarial accuracy of hlin is close to zero!
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What could be going on ? [Intuition from Tsipras and co.]

Prediction target: Y ∼ Bern(1/2, {±1})
Robust feature: X 1 | Y = +Y w.p 70% and −Y w.p. 30%.
Non-robust features: X j | Y ∼ N (ηY , 1), for j = 2, . . . , p

BTW, we note that an optimal adversarial attack can be done by
taking ∆x1 = 0 and ∆x j = −εy for all j = 2, . . . , p.

Basic intuition:
In standard training, all correlation is good correlation
If we want robustness, must avoid weakly correlated features

=⇒ learn causal features ?
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BTW, humans are not ”perfect”
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Talagrand transportation-cost inequality

The T2(c) property

Given c ≥ 0, a distribution µ on X is said to satisfy T2(c) if for
every distribution ν on X with ν � µ, one has

W2(ν, µ) ≤
√

2c kl(ν‖µ), (1)

where kl(ν‖µ) :=
∫
X log(dν/dµ)dµ, entropy of ν relative to µ.

Generalizes the well-known Pinsker’s inequality for the total
variation distance between probability measures (take 2c = 1/2).

Unlike Pinsker’s inequality which holds unconditionally, the
inequality T2(c) is a privilege only enjoyed by special classes of
reference distributions µ.
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BLOWUP / aka concentration of measure

The BLOWUP(c) property

µ is said to satisfy BLOWUP(c) if for every Borel B ⊆ X with
µ(B) > 0 and for every ε ≥

√
2c log(1/µ(B)), it holds that

µ(Bε) ≥ 1− e−
1

2c
(ε−
√

2c log(1/µ(B)))2
. (2)

It is a classical result that the Gaussian distribution on Rp has
BLOWUP(1) and T2(1), a phenomenon known as Gaussian
isoperimetry.

These result dates back to works of Borel, Lévy, Talagrand
and of Marton (see [Boucheron ’13] textbook)
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Marton’s Blowup lemma

Lemma (Marton’s BLOWUP Lemma)

On a metric space, it holds that T2(c) ⊆ BLOWUP(c).

Proof. Fact: kl(µ|B‖µ) = log(1/µ(B)) , where µ|B(A) := µ(A∩B)
µ(B) .

Thus ε ≤W2(µ|B , µX\Bε) ≤W2(µ|B , µ) + W2(µ|X\Bε , µ)

≤
√

2c kl(µ|B‖µ) +
√

2c kl(µ|X\Bε‖µ)

≤
√

2c log(1/µ(B)) +
√

2c log(1/µ(X \ Bε))

=
√

2c log(1/µ(B)) +
√

2c log(1/(1− µ(Bε)).

Rearranging the above inequality gives√
2c log(1/(1− µ(Bε))) ≥ (ε−

√
2c log(1/µ(B)))+,

and the result follows after squaring & exponentiating.
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Adversarial attacks are a ’butterfly effect’ on data manifold

Error set: B(h, k) = {x ∈ X | h(x) 6= k}, h = classifier

Neighbors of error set: B(h, k)ε := {x ∈ X | d(x ,B(h, k)) ≤ ε}

B(h, k)
B(h, k)ε

err(h|k) := PX |k(B(h, k)) > 0 if h is not perfect on class k .

Consequence is that accε(h|k) ↘ 0 expo. fast as function of ε.

Thus adversarial robustness is impossible in general!

Manuscript: https://arxiv.org/pdf/1810.04065.pdf

Elvis Dohmatob Limits on Robustness to Adversarial Examples – slide 19 / 41

https://arxiv.org/pdf/1810.04065.pdf


Preliminaries on adversarial robustness
Classifier-dependent lower bounds

Universal lower bounds

Problem setup
No Free Lunch Theorems
The Strong No Free Lunch Theorem
Corollaries

Strong No Free Lunch Theorem

Theorem (Strong “No Free Lunch” [Dohmatob ’18])

Suppose that conditional distribution PX |k has the T2(σ2
k)

property. Given a classifier h : X 7→ Y such that err(h|k) > 0,
define ε(h|k) := σk

√
2 log(1/ err(h|k)). Then we have the

following bounds:

(A) Adversarial robustness accuracy: if ε ≥ ε(h|k), then

accε(h|k) ≤ e
− 1

2σ2
k

(ε−ε(h|k))2

. (3)

(B) Average distance to error set:

d(h|k) ≤ σk
(√

log(1/ err(h|k)) +
√
π/2

)
(4)
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Proof

Use Marton’s Lemma: BLOWUP(σ2
k) ⊆ T2(σ2

k) with
B := B(h, k) := {x ∈ X | h(x) 6= k} and µ = PX |k .
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Corollary (Strong “No Free Lunch” Theorem on flat space)

Let 1 ≤ q ≤ ∞. Define εq(h|k) := ε(h|k)p1/q−1/2. If in addition
to the assumptions of Strong No Free Lunch Theorem, and
suppose the feature space is flat, i.e RicX = 0, then for the `q
threat model, we have the following bounds:

(A1) Adversarial robustness accuracy: if ε ≥ εq(h|k), then

accε(h|k) ≤ e
− p1−2/q

2σ2
k

(ε−εq(h|k))2

. (5)

(A2) Average distance to error set:

d(h|k) ≤ σkp1/q−1/2
(√

log(1/ err(h|k)) +
√
π/2

)
. (6)

Note that the case q = 1 is a proxy for “few-pixel” attack models
[Su et a. ’18].

Elvis Dohmatob Limits on Robustness to Adversarial Examples – slide 22 / 41



Preliminaries on adversarial robustness
Classifier-dependent lower bounds

Universal lower bounds

Problem setup
No Free Lunch Theorems
The Strong No Free Lunch Theorem
Corollaries

Strong No Free Lunch Theorem

Corollary (Strong NFLT for `∞ attacks [Dohmatob ’18])

In particular, for the `∞ threat model, we have the following
bounds:

(B1) Adversarial robustness accuracy: If ε ≥ ε(h|k)/
√
p, then

accε(h|k) ≤ e
− p

2σ2
k

(ε−ε(h|k)/
√
p)2

. (7)

(B2) Average distance to error set:

d(h|k) ≤ σk√
p

(√
log(1/ err(h|k)) +

√
π/2

)
(8)

Elvis Dohmatob Limits on Robustness to Adversarial Examples – slide 23 / 41



Preliminaries on adversarial robustness
Classifier-dependent lower bounds

Universal lower bounds

Problem setup
No Free Lunch Theorems
The Strong No Free Lunch Theorem
Corollaries

Special cases of our results

Log-concave distribs dPX |k ∝ e−vk (x)dx satisfying Eméry-Bakry
curvature condition: Hessx(vk) + Ricx(X ) � (1/σ2

k)Ip.

e.g multi-variate Gaussian (considered in
[Tsipras ’18, Fawzi et al. 18])

Perturbed log-concave distribs (via Holley-Shroock Theorem)

The uniform measure on compact Riemannian manifolds of
positive Ricci curvature, e.g spheres (considered in [Gilmer ’18]),
tori, or any compact Lie group.

Pushforward via a Lipschitz function f , of a distribution in
T2(σ2

k). Indeed, take σ̃k = ‖f ‖Lipσk .

etc.
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Worked example: Adversarial spheres [Gilmer ’18]

Y ∼ Bern(1/2, {±}),

X |k ∼ uniform(SpRk
), where

R+ > R− > 0.

SpRk
is a compact Riemannian manifold

with constant Ricci curvature (p − 1)R−2
k .

Thus PX |k satisfies T2(R2
k/(p − 1)).

∴ EX |k [dgeo(X ,B(h, k))] ≤ Rk√
p − 1

(
√

2 log(1/err(h|k)) +
√
π/2)

∼ Rk√
p

Φ−1(acc(h|k)

This is the same bound obtained in “manually” [Gilmer ’18].
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Some empirical confirmation

Phase-transition occurs as predicted by our theorems
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Key papers

[Tsipras ’18] There is no free lunch in adversarial robustness

[Gilmer ’18] Adversarial spheres

[Fawzi ’18] Adversarial vulnerability for any classifier

[Athalye ’18] Obfuscated Gradients Give a False Sense of
Security: Circumventing Defenses to Adversarial Examples

[Dohmatob ’19] Generalized No Free Lunch Theorem for
Adversarial Robustness

[Shafahi ’19] Are adversarial examples inevitable?
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Overview

Previous classifier-dependent bounds make very strong
assumptions on both the data and the classifier (e.g the theory
fails for perfect classifiers)

It would be nice to have universal bounds which only depend on
the geomtry of the class-conditional distributions P+ and P−

This is very very recent work, started by [Bhagoji ’19] (to appear
in NeurIPS!)

My own work builds on [Bhagoji ’19] as is still largely ongoing
(AISTATS ???)

References
[Bhagoji ’19] Lower Bounds on Adversarial Robustness from

Optimal Transport
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Abstract view of adversarial attacks

The feature space X is an abstract measure space, and the
target space is {±1} (binary classification). E.g X = (Rp,Borell).

Let P be an unknown probability distribution on the product
space X × {±1}.

A classifier is any measurable function h : X → {±1}.

An attack-model A is the prescription of a closed neighborhood
Ax for each point x of X . E.g Ax = Ball`∞(x ; ε). The case
Ax = {x} ∀x ∈ X corresponds to the attackless model.

A type-A attack is any measurable function a : X × {±1} → X
such that a(x , y) ∈ Ax ∀(x , y) ∈ X × {±1}. With abuse of
notation, we’ll also write a ∈ A. E.g a(x , y) := x − yz for some
fixed z ∈ Ball`∞(0; ε).
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Abstract view of adversarial attacks

The robustness error of h to type-A attacks is

errA(h) := E(x ,y)∼P [∃x ′ ∈ Ax s.t h(x ′) 6= y ] (9)

The Bayes-optimal robustness error for type-A attacks is

err∗A := inf
h

errA(h) (10)
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The flying pig example again!

(Picture is courtesy of https: // gradientscience. org/ intro_ adversarial/ )

x 7→ xadv := x + noise , ‖noise‖ ≤ ε = 0.005 (in example above)

X = R#pixels , Ax = Ball`∞(x ; 0.005)
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Adversarial attacks as optimal transport [Bhagoji ’19]

Given a classifier h, consider the derived classifier h̃ : X → {±1}

h̃(x) :=

{
y , if ∃y ∈ {±1} s.t h(x ′) = y ∀x ′ ∈ Ax ,

⊥, else.
(11)

Define the transport ground-cost

cA(x , x ′) =

{
1, if Ax ∩ Ax ′ = ∅,
0, else,

and note that ∀x , x ′ ∈ X , one has

1{h̃(x)=1}+1{h̃(x)=−1} ≤ cA(x , x ′)+1,

i.e f (x)− g(x ′) ≤ cA(x , x ′).

Elvis Dohmatob Limits on Robustness to Adversarial Examples – slide 33 / 41



Preliminaries on adversarial robustness
Classifier-dependent lower bounds

Universal lower bounds

Link between adversarial examples and optimal transport
Adversarially robust learning via adversarially augmented data

Adversarial attacks as optimal transport [Bhagoji ’19]

Given a classifier h, consider the derived classifier h̃ : X → {±1}

h̃(x) :=

{
y , if ∃y ∈ {±1} s.t h(x ′) = y ∀x ′ ∈ Ax ,

⊥, else.
(11)

Define the transport ground-cost

cA(x , x ′) =

{
1, if Ax ∩ Ax ′ = ∅,
0, else,

and note that ∀x , x ′ ∈ X , one has

1{h̃(x)=1}+1{h̃(x)=−1} ≤ cA(x , x ′)+1,

i.e f (x)− g(x ′) ≤ cA(x , x ′).

Elvis Dohmatob Limits on Robustness to Adversarial Examples – slide 33 / 41



Preliminaries on adversarial robustness
Classifier-dependent lower bounds

Universal lower bounds

Link between adversarial examples and optimal transport
Adversarially robust learning via adversarially augmented data

Adversarial attacks as optimal transport [Bhagoji ’19]

Given a classifier h, consider the derived classifier h̃ : X → {±1}

h̃(x) :=

{
y , if ∃y ∈ {±1} s.t h(x ′) = y ∀x ′ ∈ Ax ,

⊥, else.
(11)

Define the transport ground-cost

cA(x , x ′) =

{
1, if Ax ∩ Ax ′ = ∅,
0, else,

and note that ∀x , x ′ ∈ X , one has

1{h̃(x)=1}+1{h̃(x)=−1} ≤ cA(x , x ′)+1,

i.e f (x)− g(x ′) ≤ cA(x , x ′).

Elvis Dohmatob Limits on Robustness to Adversarial Examples – slide 33 / 41



Preliminaries on adversarial robustness
Classifier-dependent lower bounds

Universal lower bounds

Link between adversarial examples and optimal transport
Adversarially robust learning via adversarially augmented data

Adversarial attacks as optimal transport [Bhagoji ’19]

cA(x , x ′) =

{
1, if Ax ∩ Ax ′ = ∅,
0, else,

fh(x)− gh(x ′) ≤ cA(x , x ′) ∀x , x ′ ∈ X ,
and so (fh, gh) is a pair of Kantorovich
potentials for OT with ground-cost cA.

∴ OTcA(P−,P+) := sup
K−potentials φ,ψ

EP− [φ(x)]− EP+ [ψ(x)]

≥ sup
h

EP− [gh(x)]− EP+ [fh(x)]

= sup
h

2(1− errA(h))− 1 = 1− err∗A
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Universal lower bound on adversarial robustness error

Theorem ([Bhagoji ’19])

Given an attack model A, let OTA(P+,P−) be the optimal
transport distance between the +ve and -ve class-conditonal
distributions of the samples, with the ground cost given by
cA(x , x ′) = 1{Ax∩Ax′=∅}. Then we have he following lower bound
on the classification error against A-attacks

err∗A ≥
1

2
(1− OTA(P+,P−)) (12)

In particular, for the attackless case where Ax = {x} ∀x ∈ X ,
one has cA(x , x ′) = 1x 6=x ′ and so OTA(P+,P−) = TV (P+,P−).
The theorem then reduces to the following well-known result

err∗ ≥ 1

2
(1− TV (P+,P−)). (13)
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Total-Variational reformulation of the bounds

Theorem ([Dohmatob ’20 ?] / ongoing work)

Let A be an attack, and for a ∈ A define a+(x) :≡ a(x ,+1).
Define Ω := {(x , x ′) ∈ X 2 | Ax ∩ Ax ′ 6= ∅}, and

TVA(P−,P+) := inf
a∈A

TV (a−#P−, a+#P+),

T̃VA(P−,P+) := inf
γ1,γ2

TV (proj2#γ1, proj1#γ2),
(14)

where the inf is taken over all distributions on X 2 which are
concentrated on Ω s.t proj1#γ1 = P− and proj2#γ2 = P+. Then,

OTA(P−,P+) = T̃VA(P−,P+) ≤ TVA(P−,P+), (15)

and there is equality if P− and P+ have densities w.r.t Lebesgue.

Above bound suggest that rather than doing adversarial training,
we’d rather do normal training on adversarially augmented data!
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Worked example: hierarchical Gaussian classification

(Example from [Schmidt ’18])
µ ∼ N (0, Ip), y ∼ Bern({±1}), X |(Y = y) ∼ N (yµ, σ2Ip),

Consider the `∞-norm attack model A give by Ax = Ball`∞(x ; ε).

Given n samples Sn = {(x1, y1), . . . , (xn, yn)} from this model,
how small can the robust error of a classifier be ?

More precisely, lets bound

Eµ∼N (0,1) inf
ĥ
ESn∼PnEĥn∼ĥ(Sn)[errA(ĥn;µ)], (16)

where errA(ĥn;µ) is the adversarial robust error of ĥn defined by

errA(ĥn;µ) := Ey∼Bern({±1})Ex∼N (yµ,σ2Ip)[∃x ′ ∈ Ax s.t ĥn(x ′) 6= y ].
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Worked example: hierarchical Gaussian classification

errA(ĥn;µ) := Ey∼Bern({±1})Ex∼N (yµ,σ2Ip)[∃x ′ ∈ Ax s.t ĥn(x ′) 6= y ].

The posterior distribution of the model parameter is N (µ̂n, σ̂
2
n),

with σ̂2
n = σ2

σ2+n
, and µ̂n = n

σ2+n
x̄ with x̄ = 1

n

∑n
i=1 xi

∴ errA(ĥn) = inf
h

errA(h; µ̂n, σ̂
2
n) ≥ . . .

≥ EµESn

1

2

(
1− inf

‖z‖∞≤ε
TV(N (−µ̂n + z , σ̂2

n),N (µ̂n − z , σ̂2
n))

)
≥ EµESnΦ

(√
p

σ̂n
(‖µ̂n‖ − ε)+

)
≥ EµESnP(‖µ̂n‖∞ ≤ ε)Φ(0)

≈ 1

2
Pu∼N (0,Ip)

(
n

n + σ2
‖u‖∞ ≤ ε

)
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Worked example: hierarchical Gaussian classification

Thus, if n ≤ ε2σ2

8 log(d) , then n
σ2+n

≤ ε

2
√

2 log(d)
, and so

∴ err∗A, n ≥
1

2
Pu∼N (0,Ip)

(
n

n + σ2
‖u‖∞ ≤ ε

)
≥ 1

2
Pu∼N (0,Ip)

(
‖u‖∞ ≤ 2

√
2 log(d)

)
...

≥ 1

2
(1− 1/d) ≈ 1

2
in high dimensions!
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Questions ?
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