Optimal transport in machine learning

Quentin Berthet

MLiTRW workshop - Critéo - 2019

Optimal transport - Monge (1781)

Transporting mass with measure μ to have measure ν with minimal effort.

- All maps $T_{\#}\mu = \nu$ (transport from μ to ν): $T(X) \sim \nu$ when $X \sim \mu$.
- Finding map that minimizes the total transport cost.

$$W_p^p(\mu,\nu) = \inf_{T:T_{\#}\mu=\nu} \int \|T(x) - x\|^p \,\mathrm{d}\mu(x) \,.$$

Wasserstein distances between distributions based on optimal transport.

Measures "smallest" transformation between distributions.

Transport measure μ to have measure ν with minimal effort. Monge (81)

$$\min_{T:T_{\#}\mu=\nu} \sum_{x} c(T(x), x) \mu(x) \quad \text{(discrete)}.$$

Complicated constraint, requires possible one-to-one mapping.

Transport measure μ to have measure ν with minimal effort. Monge (81)

$$\min_{T:T_{\#}\mu=\nu} \sum_{x} c(T(x), x) \mu(x) \quad \text{(discrete)}.$$

Complicated constraint, requires possible one-to-one mapping.

Transport measure μ to have measure ν with minimal effort. Monge (81)

$$\min_{T:T_{\#}\mu=\nu} \sum_{x} c(T(x), x) \mu(x) \quad \text{(discrete)}.$$

Complicated constraint, requires possible one-to-one mapping.

Problem of transporting mass with measure μ to have measure ν .

$$\min_{\pi \in \mathcal{M}(\mu,\nu)} \sum_{x,y} c(x,y) \,\pi(x,y) = \min_{\pi \in \mathcal{M}(\mu,\nu)} \mathbf{E}_{(X,Y)\sim\pi}[c(X,Y)] \quad \text{Kantorovitch (42)}.$$

Distribution $\pi(x, \cdot)$ describes how the mass $\mu(x)$ is split. Linear constraints.

Optimal transport

In discrete case, with matrix $C_{x,y} = c(x,y)$ and $\Pi_{x,y} = \pi(x,y)$.

Forms a linear program, one of the foundational problems of optimization.

min
$$\langle \Pi, C \rangle$$
 (OT)
s.t. $\mathbf{1}^{\top} \Pi = \mu^{\top}$
 $\Pi \mathbf{1} = \nu$
 $\Pi \geq 0$.

- Linear objective and constraints.
- Size n problems: algorithm in $O(n^3)$.
- Linked to assignment problem.
- Solutions in extreme points: sparse.
- Uniform distributions:

One-to-one transports

Birkhoff polytope, relaxation tight.

Optimal transport - entropic regularized

Regularized version, with **entropic penalty**, for $\eta > 0$ Wilson (62), Cuturi (13)

 $\min_{\Pi \in \mathcal{M}(\mu,\nu)} \langle \Pi, C \rangle - \eta H(\Pi) \,.$

Computational speed-up Sinkhorn (64), strongly convex objective, influence of η . Guarantees for ε -approximation of **(OT)** in $O(n^2 \log(n) / \varepsilon^2)$ for all costs Altschuler et al. (17), Dvurechensky et al. (17)

Optimal transport - statistics and ML

• Compares distributions taking geometric aspects in account.

• Polyvalent tool: compares continuous/atomic distributions

• Used as a loss $W(\alpha_{\theta}, \hat{\mu}_n)$ to fit between parametric α_{θ} and data $\hat{\mu}_n$

Optimal transport - statistics and ML

- Measures metric difference between random variables / datasets.
- Many applications in statistics and machine learning Peyré and Cuturi (18)
 - Wasserstein GANs Arjovsky et al. (17)
 - Wasserstein Autoencoders Tolstikhin et al. (18)
- Minimization of loss: Wasserstein variational problems

$$\min_{\theta \in \Theta} W_p(\alpha_{\theta}, \mu) \qquad \min_{\nu} \frac{1}{K} \sum_{i=1}^{K} W_p^p(\nu, \mu^{(i)}) \,.$$

- Minimum Kantorovich estimators Bassetti et al. (06)
- Wasserstein Barycenters Agueh and Carlier (11)
- In practice μ or $\mu^{(i)}$ s based on samples, empirical $\hat{\mu}_n = (1/n) \sum_{j=1}^n \delta_{X_j}$
- When $n \to \infty$, over compact spaces $W_p(\mu, \hat{\mu}_n) \to 0$.

Unsupervised alignment of embeddings:

Wasserstein Procrustes

E. Grave (Facebook Al Research)

A. Joulin (Facebook Al Research)

• Unsupervised alignment of embeddings with Wasserstein Procrustes

E. Grave, A. Joulin, Q.B.

AIStats 2019

Word embeddings

• Vectors representing words, obtained in data-driven manner from corpus

- Word embeddings with fastText: similar to word2vec with n-gram information.
- Obtained from wikipedia pages in several languages.
- Loss is invariant by rotation, relies on relative placement of vectors.

Word embeddings alignment

• Different corpora in different languages yield embeddings $X, Y \in \mathbf{R}^X$

• Embedding alignment: Transformation $Q \in \mathcal{O}_d$ matching elements of XQ, Y

Embedding alignment

• Supervised alignment: Transformation $Q \in \mathcal{O}_d$ fitting $XQ \approx Y$.

• **Procrustes:** Closed form solution with SVD of X and Y, gradients

$$\min_{Q \in \mathcal{O}_d} \|XQ - Y\|^2 \quad \text{with} \quad Q^* = UV^\top \quad \text{for} \ X^\top Y = USV^\top$$

Requires an existing dictionary, unreasonable expectation in many applications.

Sometimes finding the correspondence is the objective: point registration.

Unsupervised embedding alignment: Wasserstein Procrustes

• **Correspondence:** Once aligned Q_0 , finding $P \in \mathcal{P}_n$ such that $XQ_0 \approx YP$.

Equivalent to assignment problem (OT), minimum distance = Wasserstein

• Wasserstein Procrustes: Optimizing jointly alignment and correspondance

$$\min_{P \in \mathcal{P}_n} \min_{Q \in \mathcal{O}_d} \|XQ - YP\|^2 = \min_{Q \in \mathcal{O}_d} W_2^2(XQ, Y)$$

Equivalent to Wasserstein loss minimization between XQ and Y Gold and Rangarajan (96), Zhang et al. (17).

No joint convexity, problem computationally NP-hard.

Wasserstein Procrustes

• Alternated minimization: Solving each min. problem, iteratively

Requires a large number of initializations, slow convergence. Zhang et al (17)

- **Related work:** Other approaches to alignment and Wassertein minimization.
 - \circ Minimization with other techniques Conneau et al. (17), Artetxe et al. (18)
 - Regularization with entropic penalty Alvarez-Melis et al. (19)

Wasserstein Procrustes - our approach

- Symmetry exploitation: Gram matrix $K_X = XX^{\top} = (XQ)(XQ)^{\top}$
 - Finding row/column permutation P between $K_X = XX^{\top}$ and $K_Y = YY^{\top}$.
 - $\circ~$ Permutation not fooled by initial local placement of X and Y.

$$\min_{P \in \mathcal{P}_n} \|K_X - PK_Y P^\top\|_2^2 = \min_{P \in \mathcal{P}_n} \|K_X P - PK_Y\|_2^2$$

• Convex relaxation, over the Birkhoff polytope (convex hull of permutations).

- $\mathcal{P}_n = \mathcal{B}_n \cap \mathcal{O}_n$, exact quadratic reformulation.
- Gromov-Wasserstein problem.
- Relaxation over convex hull \mathcal{B}_n $\min_{P \in \mathcal{B}_n} \|K_X P - P K_Y\|_2^2$
- Exact* for identical* clouds of vectors.

Wasserstein Procrustes - our approach

- Symmetry exploitation: Gram matrix $K_X = XX^{\top} = (XQ)(XQ)^{\top}$
 - Finding row/column permutation P between $K_X = XX^{\top}$ and $K_Y = YY^{\top}$.
 - $\circ~$ Permutation not fooled by initial local placement of X and Y.

$$\min_{P \in \mathcal{P}_n} \|K_X - PK_Y P^\top\|_2^2 = \min_{P \in \mathcal{P}_n} \|K_X P - PK_Y\|_2^2$$

• Convex relaxation, over the Birkhoff polytope (convex hull of permutations).

- $\mathcal{P}_n = \mathcal{B}_n \cap \mathcal{O}_n$, exact quadratic reformulation.
- Gromov-Wasserstein problem.
- Relaxation over convex hull \mathcal{B}_n $\min_{P \in \mathcal{B}_n} \|K_X P - P K_Y\|_2^2$
- Exact* for identical* clouds of vectors.

Wasserstein Procrustes - our approach

- Symmetry exploitation: Gram matrix $K_X = XX^{\top} = (XQ)(XQ)^{\top}$
 - Finding row/column permutation P between $K_X = XX^{\top}$ and $K_Y = YY^{\top}$.
 - $\circ~$ Permutation not fooled by initial local placement of X and Y.

$$\min_{P \in \mathcal{P}_n} \|K_X - PK_Y P^\top\|_2^2 = \min_{P \in \mathcal{P}_n} \|K_X P - PK_Y\|_2^2$$

• Convex relaxation, over the Birkhoff polytope (convex hull of permutations).

- $\mathcal{P}_n = \mathcal{B}_n \cap \mathcal{O}_n$, exact quadratic reformulation.
- Gromov-Wasserstein problem.
- Relaxation over convex hull \mathcal{B}_n $\min_{P \in \mathcal{B}_n} \|K_X P - P K_Y\|_2^2$
- Exact* for identical* clouds of vectors.

Wasserstein Procrustes - full algorithm

Two central ideas

- \circ Initialize (P_0, Q_0) with convex relaxation, not sensitive to relative placement.
- Use mini-batches of vectors at each step: stochastic optimization.

For four words, before alignment

Algorithm 1 Stochastic optimization

- 1: for t = 1 to T do
- 2: Draw $\mathbf{X}_t, \mathbf{Y}_t$ from \mathbf{X}, \mathbf{Y} , of size b
- 3: Optimal matching \mathbf{P}_t between $\mathbf{X}_t \mathbf{Q}_t$ and \mathbf{Y}_t

$$\mathbf{P}_t = \operatorname*{argmax}_{\mathbf{P} \in \mathcal{P}_b} \mathbf{Tr} \mathbf{Y}_t \mathbf{Q}_t^\top \mathbf{X}_t^\top \mathbf{P}.$$

4: Gradient \mathbf{G}_t with respect to \mathbf{Q} :

$$\mathbf{G}_t = -2\mathbf{X}_t^\top \mathbf{P}_t \mathbf{Y}_t.$$

5: Projected gradient step:

$$\mathbf{Q}_{t+1} = \Pi_{\mathcal{O}_d} \left(\mathbf{Q}_t - \alpha \mathbf{G}_t \right).$$

6: end for

Wasserstein Procrustes - full algorithm

Two central ideas

- \circ Initialize (P_0, Q_0) with convex relaxation, not sensitive to relative placement.
- Use mini-batches of vectors at each step: stochastic optimization.

For four words, after alignment

Algorithm 2 Stochastic optimization

- 1: for t = 1 to T do
- 2: Draw $\mathbf{X}_t, \mathbf{Y}_t$ from \mathbf{X}, \mathbf{Y} , of size b
- 3: Optimal matching \mathbf{P}_t between $\mathbf{X}_t \mathbf{Q}_t$ and \mathbf{Y}_t

$$\mathbf{P}_t = \operatorname*{argmax}_{\mathbf{P} \in \mathcal{P}_b} \mathbf{Tr} \mathbf{Y}_t \mathbf{Q}_t^\top \mathbf{X}_t^\top \mathbf{P}.$$

4: Gradient \mathbf{G}_t with respect to \mathbf{Q} :

$$\mathbf{G}_t = -2\mathbf{X}_t^\top \mathbf{P}_t \mathbf{Y}_t.$$

5: Projected gradient step:

$$\mathbf{Q}_{t+1} = \Pi_{\mathcal{O}_d} \left(\mathbf{Q}_t - \alpha \mathbf{G}_t \right).$$

6: end for

Results

- Embeddings obtained with fastText from wikipedia pages with 200k words.
- Alignement on 20k words, convex relaxation on 2.5k words.

	EN-ES	EN-FR	EN-DE	EN-RU
Procrustes	82.7	82.7	74.8	51.3
Adversarial* Iterative Closest Point*	81.7 82.1	82.3 82.3	74.0 74.7	44.0 47.5
Gromov-Wasserstein Ours	81.7 82.8	81.3 82.3	71.9 75.6	45.1 45.2

Comparison with supervised and unsupervised state-of-the-art approaches. In bold, the best among unsupervised methods, * indicates unnormalized vectors.

• Experiments on languages also indicate degree of proximity.

Discussion

- Stochastic element: correspondence between X_t and Y_t suprising
- Can be interpreted as gradient step on $W_2^2(QX_t, Y_t)$, proxy for $W_2^2(QX, Y)$
- Empirical measure of X_t and Y_t : sampling from measure of X and Y
- Question of convergence $W_2(\hat{\mu}_b, \hat{\nu}_b)$ to $W_2(\mu, \nu)$.

Left: precision as a function of the batch size, 4k iterations.

Right: Accuracy and objective function value in EN-RU, batch-size 2k.

Merci