Optimal transport in machine learning

Quentin Berthet

MLiTRW workshop - Critéo - 2019

Optimal transport - Monge (1781)

Transporting mass with measure μ to have measure ν with minimal effort.

- All maps $T_{\#} \mu=\nu$ (transport from μ to $\left.\nu\right): T(X) \sim \nu$ when $X \sim \mu$.
- Finding map that minimizes the total transport cost.

$$
W_{p}^{p}(\mu, \nu)=\inf _{T: T_{\#} \mu=\nu} \int\|T(x)-x\|^{p} \mathrm{~d} \mu(x)
$$

Wasserstein distances between distributions based on optimal transport.
Measures "smallest" transformation between distributions.

Optimal transport - discrete

Transport measure μ to have measure ν with minimal effort. Monge (81)

$$
\min _{T: T_{\#} \mu=\nu} \sum_{x} c(T(x), x) \mu(x) \quad \text { (discrete) }
$$

Complicated constraint, requires possible one-to-one mapping.

Optimal transport - discrete

Transport measure μ to have measure ν with minimal effort. Monge (81)

$$
\min _{T: T_{\#} \mu=\nu} \sum_{x} c(T(x), x) \mu(x) \quad \text { (discrete) }
$$

Complicated constraint, requires possible one-to-one mapping.

Optimal transport - discrete

Transport measure μ to have measure ν with minimal effort. Monge (81)

$$
\min _{T: T_{\#} \mu=\nu} \sum_{x} c(T(x), x) \mu(x) \quad \text { (discrete) }
$$

Complicated constraint, requires possible one-to-one mapping.

Optimal transport - discrete

Problem of transporting mass with measure μ to have measure ν.

$$
\min _{\pi \in \mathcal{M}(\mu, \nu)} \sum_{x, y} c(x, y) \pi(x, y)=\min _{\pi \in \mathcal{M}(\mu, \nu)} \mathbf{E}_{(X, Y) \sim \pi}[c(X, Y)] \quad \text { Kantorovitch (42). }
$$

Distribution $\pi(x, \cdot)$ describes how the mass $\mu(x)$ is split. Linear constraints.

Optimal transport

In discrete case, with matrix $C_{x, y}=c(x, y)$ and $\Pi_{x, y}=\pi(x, y)$.
Forms a linear program, one of the foundational problems of optimization.

$$
\begin{array}{ll}
\min & \langle\Pi, C\rangle \tag{OT}\\
\text { s.t. } & \mathbf{1}^{\top} \Pi=\mu^{\top} \\
& \Pi \mathbf{1}=\nu \\
& \Pi \geq 0 .
\end{array}
$$

- Linear objective and constraints.
- Size n problems: algorithm in $O\left(n^{3}\right)$.
- Linked to assignment problem.
- Solutions in extreme points: sparse.
- Uniform distributions:

One-to-one transports

Birkhoff polytope, relaxation tight.

Optimal transport - entropic regularized

Regularized version, with entropic penalty, for $\eta>0$ Wilson (62), Cuturi (13)

$$
\min _{\Pi \in \mathcal{M}(\mu, \nu)}\langle\Pi, C\rangle-\eta H(\Pi)
$$

Computational speed-up Sinkhorn (64), strongly convex objective, influence of η.
Guarantees for ε-approximation of (OT) in $O\left(n^{2} \log (n) / \varepsilon^{2}\right)$ for all costs
Altschuler et al. (17), Dvurechensky et al. (17)

$\eta=0$

tiny η

small η

large η

Optimal transport - statistics and ML

- Compares distributions taking geometric aspects in account.

far
close

- Polyvalent tool: compares continuous/atomic distributions

- Used as a loss $W\left(\alpha_{\theta}, \hat{\mu}_{n}\right)$ to fit between parametric α_{θ} and data $\hat{\mu}_{n}$

Optimal transport - statistics and ML

- Measures metric difference between random variables / datasets.
- Many applications in statistics and machine learning Peyré and Cuturi (18)
- Wasserstein GANs Arjovsky et al. (17)
- Wasserstein Autoencoders Tolstikhin et al. (18)
- Minimization of loss: Wasserstein variational problems

$$
\min _{\theta \in \Theta} W_{p}\left(\alpha_{\theta}, \mu\right) \quad \min _{\nu} \frac{1}{K} \sum_{i=1}^{K} W_{p}^{p}\left(\nu, \mu^{(i)}\right) .
$$

- Minimum Kantorovich estimators Bassetti et al. (06)
- Wasserstein Barycenters Agueh and Carlier (11)
- In practice μ or $\mu^{(i)}$ s based on samples, empirical $\hat{\mu}_{n}=(1 / n) \sum_{j=1}^{n} \delta_{X_{j}}$
- When $n \rightarrow \infty$, over compact spaces $W_{p}\left(\mu, \hat{\mu}_{n}\right) \rightarrow 0$.

Unsupervised alignment of embeddings:

Wasserstein Procrustes

E. Grave (Facebook AI Research)

A. Joulin (Facebook AI Research)

- Unsupervised alignment of embeddings with Wasserstein Procrustes
E. Grave, A. Joulin, Q.B.

AIStats 2019

Word embeddings

- Vectors representing words, obtained in data-driven manner from corpus

- Word embeddings with fastText: similar to word2vec with n -gram information.
- Obtained from wikipedia pages in several languages.
- Loss is invariant by rotation, relies on relative placement of vectors.

Word embeddings alignment

- Different corpora in different languages yield embeddings $X, Y \in \mathbf{R}^{X}$

- Embedding alignment: Transformation $Q \in \mathcal{O}_{d}$ matching elements of $X Q, Y$

Embedding alignment

- Supervised alignment: Transformation $Q \in \mathcal{O}_{d}$ fitting $X Q \approx Y$.

- Procrustes: Closed form solution with SVD of X and Y, gradients

$$
\min _{Q \in \mathcal{O}_{d}}\|X Q-Y\|^{2} \quad \text { with } \quad Q^{*}=U V^{\top} \quad \text { for } X^{\top} Y=U S V^{\top} .
$$

Requires an existing dictionary, unreasonable expectation in many applications.

Sometimes finding the correspondence is the objective: point registration.

Unsupervised embedding alignment: Wasserstein Procrustes

- Correspondence: Once aligned Q_{0}, finding $P \in \mathcal{P}_{n}$ such that $X Q_{0} \approx Y P$.

Equivalent to assignment problem (OT), minimum distance $=$ Wasserstein

- Wasserstein Procrustes: Optimizing jointly alignment and correspondance

$$
\min _{P \in \mathcal{P}_{n}} \min _{Q \in \mathcal{O}_{d}}\|X Q-Y P\|^{2}=\min _{Q \in \mathcal{O}_{d}} W_{2}^{2}(X Q, Y)
$$

Equivalent to Wasserstein loss minimization between $X Q$ and Y
Gold and Rangarajan (96), Zhang et al. (17).
No joint convexity, problem computationally NP-hard.

Wasserstein Procrustes

- Alternated minimization: Solving each min. problem, iteratively

Requires a large number of initializations, slow convergence. Zhang et al (17)

- Related work: Other approaches to alignment and Wassertein minimization.
- Minimization with other techniques Conneau et al. (17), Artetxe et al. (18)
- Regularization with entropic penalty Alvarez-Melis et al. (19)

Wasserstein Procrustes - our approach

- Symmetry exploitation: Gram matrix $K_{X}=X X^{\top}=(X Q)(X Q)^{\top}$
- Finding row/column permutation P between $K_{X}=X X^{\top}$ and $K_{Y}=Y Y^{\top}$.
- Permutation not fooled by initial local placement of X and Y.

$$
\min _{P \in \mathcal{P}_{n}}\left\|K_{X}-P K_{Y} P^{\top}\right\|_{2}^{2}=\min _{P \in \mathcal{P}_{n}}\left\|K_{X} P-P K_{Y}\right\|_{2}^{2}
$$

- Convex relaxation, over the Birkhoff polytope (convex hull of permutations).
- $\mathcal{P}_{n}=\mathcal{B}_{n} \cap \mathcal{O}_{n}$, exact quadratic reformulation.
- Gromov-Wasserstein problem.
- Relaxation over convex hull \mathcal{B}_{n}

$$
\min _{P \in \mathcal{B}_{n}}\left\|K_{X} P-P K_{Y}\right\|_{2}^{2}
$$

- Exact* for identical* clouds of vectors.

Wasserstein Procrustes - our approach

- Symmetry exploitation: Gram matrix $K_{X}=X X^{\top}=(X Q)(X Q)^{\top}$
- Finding row/column permutation P between $K_{X}=X X^{\top}$ and $K_{Y}=Y Y^{\top}$.
- Permutation not fooled by initial local placement of X and Y.

$$
\min _{P \in \mathcal{P}_{n}}\left\|K_{X}-P K_{Y} P^{\top}\right\|_{2}^{2}=\min _{P \in \mathcal{P}_{n}}\left\|K_{X} P-P K_{Y}\right\|_{2}^{2}
$$

- Convex relaxation, over the Birkhoff polytope (convex hull of permutations).
- $\mathcal{P}_{n}=\mathcal{B}_{n} \cap \mathcal{O}_{n}$, exact quadratic reformulation.
- Gromov-Wasserstein problem.
- Relaxation over convex hull \mathcal{B}_{n}

$$
\min _{P \in \mathcal{B}_{n}}\left\|K_{X} P-P K_{Y}\right\|_{2}^{2}
$$

- Exact* for identical* clouds of vectors.

Wasserstein Procrustes - our approach

- Symmetry exploitation: Gram matrix $K_{X}=X X^{\top}=(X Q)(X Q)^{\top}$
- Finding row/column permutation P between $K_{X}=X X^{\top}$ and $K_{Y}=Y Y^{\top}$.
- Permutation not fooled by initial local placement of X and Y.

$$
\min _{P \in \mathcal{P}_{n}}\left\|K_{X}-P K_{Y} P^{\top}\right\|_{2}^{2}=\min _{P \in \mathcal{P}_{n}}\left\|K_{X} P-P K_{Y}\right\|_{2}^{2}
$$

- Convex relaxation, over the Birkhoff polytope (convex hull of permutations).
- $\mathcal{P}_{n}=\mathcal{B}_{n} \cap \mathcal{O}_{n}$, exact quadratic reformulation.
- Gromov-Wasserstein problem.
- Relaxation over convex hull \mathcal{B}_{n}

$$
\min _{P \in \mathcal{B}_{n}}\left\|K_{X} P-P K_{Y}\right\|_{2}^{2}
$$

- Exact* for identical* clouds of vectors.

Wasserstein Procrustes - full algorithm

- Two central ideas
- Initialize $\left(P_{0}, Q_{0}\right)$ with convex relaxation, not sensitive to relative placement.
- Use mini-batches of vectors at each step: stochastic optimization.

	fr_feu
en_earth	fr_terre
en_fire	
en_water	
	fr_eair
	fr_air

For four words, before alignment

Algorithm 1 Stochastic optimization
1: for $t=1$ to T do
Draw $\mathbf{X}_{t}, \mathbf{Y}_{t}$ from \mathbf{X}, \mathbf{Y}, of size b Optimal matching \mathbf{P}_{t} between $\mathbf{X}_{t} \mathbf{Q}_{t}$ and \mathbf{Y}_{t}

$$
\mathbf{P}_{t}=\underset{\mathbf{P} \in \mathcal{P}_{b}}{\operatorname{argmax}} \operatorname{Tr} \mathbf{Y}_{t} \mathbf{Q}_{t}^{\top} \mathbf{X}_{t}^{\top} \mathbf{P} .
$$

4: \quad Gradient \mathbf{G}_{t} with respect to \mathbf{Q} :

$$
\mathbf{G}_{t}=-2 \mathbf{X}_{t}^{\top} \mathbf{P}_{t} \mathbf{Y}_{t}
$$

5: Projected gradient step:

$$
\mathbf{Q}_{t+1}=\Pi_{\mathcal{O}_{d}}\left(\mathbf{Q}_{t}-\alpha \mathbf{G}_{t}\right)
$$

6: end for

Wasserstein Procrustes - full algorithm

- Two central ideas
- Initialize $\left(P_{0}, Q_{0}\right)$ with convex relaxation, not sensitive to relative placement.
- Use mini-batches of vectors at each step: stochastic optimization.

For four words, after alignment

Algorithm 2 Stochastic optimization
1: for $t=1$ to T do
Draw $\mathbf{X}_{t}, \mathbf{Y}_{t}$ from \mathbf{X}, \mathbf{Y}, of size b Optimal matching \mathbf{P}_{t} between $\mathbf{X}_{t} \mathbf{Q}_{t}$ and \mathbf{Y}_{t}

$$
\mathbf{P}_{t}=\underset{\mathbf{P} \in \mathcal{P}_{b}}{\operatorname{argmax}} \operatorname{Tr} \mathbf{Y}_{t} \mathbf{Q}_{t}^{\top} \mathbf{X}_{t}^{\top} \mathbf{P} .
$$

4: \quad Gradient \mathbf{G}_{t} with respect to \mathbf{Q} :

$$
\mathbf{G}_{t}=-2 \mathbf{X}_{t}^{\top} \mathbf{P}_{t} \mathbf{Y}_{t}
$$

5: Projected gradient step:

$$
\mathbf{Q}_{t+1}=\Pi_{\mathcal{O}_{d}}\left(\mathbf{Q}_{t}-\alpha \mathbf{G}_{t}\right)
$$

6: end for

Results

- Embeddings obtained with fastText from wikipedia pages with 200 k words.
- Alignement on 20 k words, convex relaxation on 2.5 k words.

	EN-ES	EN-FR	EN-DE	EN-RU
Procrustes	82.7	82.7	74.8	51.3
Adversarial* $^{\text {Iterative Closest Point* }}$	81.7	82.1	$\mathbf{8 2 . 3}$	74.0
44.0				
Gromov-Wasserstein	81.7	81.3	71.7	$\mathbf{4 7 . 5}$
Ours	$\mathbf{8 2 . 8}$	$\mathbf{8 2 . 3}$	$\mathbf{7 5 . 6}$	45.1

Comparison with supervised and unsupervised state-of-the-art approaches. In bold, the best among unsupervised methods, * indicates unnormalized vectors.

- Experiments on languages also indicate degree of proximity.

Discussion

- Stochastic element: correspondence between X_{t} and Y_{t} - suprising
- Can be interpreted as gradient step on $W_{2}^{2}\left(Q X_{t}, Y_{t}\right)$, proxy for $W_{2}^{2}(Q X, Y)$
- Empirical measure of X_{t} and Y_{t} : sampling from measure of X and Y
- Question of convergence $W_{2}\left(\hat{\mu}_{b}, \hat{\nu}_{b}\right)$ to $W_{2}(\mu, \nu)$.

	100	200	400	800	1600
Time	1 m 47 s	2 m 07 s	2 m 54 s	5 m 34 s	22 m 13 s
EN-ES	68.5	73.8	74.9	75.0	76.3
EN-FR	67.4	71.9	74.5	75.6	75.7
EN-DE	59.1	63.0	64.4	65.8	66.4
EN-RU	23.7	27.9	29.9	32.3	33.2

Left: precision as a function of the batch size, 4 k iterations.
Right: Accuracy and objective function value in EN-RU, batch-size 2 k .

Merci

