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Optimal transport - Monge (1781)

Transporting mass with measure µ to have measure ν with minimal effort.

xx T (x)T (x)TT

µµ ⌫⌫

• All maps T#µ = ν (transport from µ to ν): T (X) ∼ ν when X ∼ µ.

• Finding map that minimizes the total transport cost.

W p
p (µ, ν) = inf

T :T#µ=ν

∫
‖T (x)− x‖p dµ(x) .

Wasserstein distances between distributions based on optimal transport.

Measures “smallest” transformation between distributions.
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Optimal transport - discrete

Transport measure µ to have measure ν with minimal effort. Monge (81)

min
T :T#µ=ν

∑
x

c
(
T (x), x

)
µ(x) (discrete) .

Complicated constraint, requires possible one-to-one mapping.
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Optimal transport - discrete

Problem of transporting mass with measure µ to have measure ν.

min
π∈M(µ,ν)

∑
x,y

c(x, y)π(x, y) = min
π∈M(µ,ν)

E(X,Y )∼π[c(X,Y )] Kantorovitch (42) .

Distribution π(x, ·) describes how the mass µ(x) is split. Linear constraints.
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Optimal transport

In discrete case, with matrix Cx,y = c(x, y) and Πx,y = π(x, y).

Forms a linear program, one of the foundational problems of optimization.

min 〈Π, C〉 (OT)

s.t. 1>Π = µ>

Π1 = ν

Π ≥ 0 .

�C�C

M(µ, ⌫)M(µ, ⌫) ⇧?⇧?

• Linear objective and constraints.

• Size n problems: algorithm in O(n3).

• Linked to assignment problem.

• Solutions in extreme points: sparse.

• Uniform distributions:

One-to-one transports

Birkhoff polytope, relaxation tight.
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Optimal transport - entropic regularized

Regularized version, with entropic penalty, for η > 0 Wilson (62), Cuturi (13)

min
Π∈M(µ,ν)

〈Π, C〉 − ηH(Π) .

Computational speed-up Sinkhorn (64), strongly convex objective, influence of η.

Guarantees for ε-approximation of (OT) in O(n2 log(n)/ε2) for all costs

Altschuler et al. (17), Dvurechensky et al. (17)

η = 0 tiny η small η large η
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Optimal transport - statistics and ML

• Compares distributions taking geometric aspects in account.

closeclose farfar closeclose

• Polyvalent tool: compares continuous/atomic distributions

• Used as a loss W (αθ, µ̂n) to fit between parametric αθ and data µ̂n
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Optimal transport - statistics and ML

• Measures metric difference between random variables / datasets.

• Many applications in statistics and machine learning Peyré and Cuturi (18)

◦ Wasserstein GANs Arjovsky et al. (17)

◦ Wasserstein Autoencoders Tolstikhin et al. (18)

• Minimization of loss: Wasserstein variational problems

min
θ∈Θ

Wp(αθ, µ) min
ν

1

K

K∑
i=1

W p
p (ν, µ(i)) .

◦ Minimum Kantorovich estimators Bassetti et al. (06)

◦ Wasserstein Barycenters Agueh and Carlier (11)

• In practice µ or µ(i)s based on samples, empirical µ̂n = (1/n)
∑n
j=1 δXj

• When n→∞, over compact spaces Wp(µ, µ̂n)→ 0.
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Unsupervised alignment of embeddings:

Wasserstein Procrustes



E. Grave (Facebook AI Research) A. Joulin (Facebook AI Research)

• Unsupervised alignment of embeddings with Wasserstein Procrustes

E. Grave, A. Joulin, Q.B.

AIStats 2019
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Word embeddings

• Vectors representing words, obtained in data-driven manner from corpus

airair

firefire

earthearth

...

...

(0.15, . . . “air” . . . , 0.37)(0.15, . . . “air” . . . , 0.37)

(0.42, . . . “fire” . . . , 0.21)(0.42, . . . “fire” . . . , 0.21)

(0.18, . . . “earth” . . . , 0.12)(0.18, . . . “earth” . . . , 0.12)

=

airair

firefire

earthearth

• Word embeddings with fastText: similar to word2vec with n-gram information.

• Obtained from wikipedia pages in several languages.

• Loss is invariant by rotation, relies on relative placement of vectors.
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Word embeddings alignment

• Different corpora in different languages yield embeddings X,Y ∈ RX

airair

firefire

earthearth

airair

firefire

earthearth
terreterre

feufeu

airair

airair

feufeu

terreterre

• Embedding alignment: Transformation Q ∈ Od matching elements of XQ,Y

airair

firefire

earthearthairair

feufeu

terreterre

XX

YY
W (XQ, Y ) smallW (XQ, Y ) small
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Embedding alignment

• Supervised alignment: Transformation Q ∈ Od fitting XQ ≈ Y .

airair

firefire

earthearthairair

feufeu

terreterre

XX

YY kXQ � Y k smallkXQ � Y k small

• Procrustes: Closed form solution with SVD of X and Y , gradients

min
Q∈Od

‖XQ− Y ‖2 with Q∗ = UV > forX>Y = USV > .

Requires an existing dictionary, unreasonable expectation in many applications.

Sometimes finding the correspondence is the objective: point registration.
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Unsupervised embedding alignment: Wasserstein Procrustes

• Correspondence: Once aligned Q0, finding P ∈ Pn such that XQ0 ≈ Y P .

kXQ0 � Y Pk smallkXQ0 � Y Pk small

min
P∈Pn

‖XQ0 − Y P‖2 = W 2
2 (XQ0, Y )

Equivalent to assignment problem (OT), minimum distance = Wasserstein

• Wasserstein Procrustes: Optimizing jointly alignment and correspondance

min
P∈Pn

min
Q∈Od

‖XQ− Y P‖2 = min
Q∈Od

W 2
2 (XQ,Y )

Equivalent to Wasserstein loss minimization between XQ and Y

Gold and Rangarajan (96), Zhang et al. (17).

No joint convexity, problem computationally NP-hard.
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Wasserstein Procrustes

• Alternated minimization: Solving each min. problem, iteratively

XX

YY

min in Pmin in P min in Qmin in Q

Requires a large number of initializations, slow convergence. Zhang et al (17)

• Related work: Other approaches to alignment and Wassertein minimization.

◦ Minimization with other techniques Conneau et al. (17), Artetxe et al. (18)

◦ Regularization with entropic penalty Alvarez-Melis et al. (19)
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Wasserstein Procrustes - our approach

• Symmetry exploitation: Gram matrix KX = XX> = (XQ)(XQ)>

◦ Finding row/column permutation P between KX = XX> and KY = Y Y >.

◦ Permutation not fooled by initial local placement of X and Y .

min
P∈Pn

‖KX − PKY P
>‖22 = min

P∈Pn
‖KXP − PKY ‖22

◦ Convex relaxation, over the Birkhoff polytope (convex hull of permutations).

OnOn

PnPn

BnBn

• Pn = Bn ∩ On, exact quadratic
reformulation.

• Gromov-Wasserstein problem.

• Relaxation over convex hull Bn
min
P∈Bn

‖KXP − PKY ‖22

• Exact∗ for identical∗ clouds of vectors.
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Wasserstein Procrustes - full algorithm

• Two central ideas

◦ Initialize (P0, Q0) with convex
relaxation, not sensitive to relative
placement.

◦ Use mini-batches of vectors at each
step: stochastic optimization.

For four words, before alignment

Algorithm 1 Stochastic optimization
1: for t = 1 to T do
2: Draw Xt,Yt from X,Y, of size b
3: Optimal matching Pt between

XtQt and Yt

Pt = argmax
P∈Pb

TrYtQ
>
t X
>
t P.

4: Gradient Gt with respect to Q:

Gt = −2X>t PtYt.

5: Projected gradient step:

Qt+1 = ΠOd (Qt − αGt) .

6: end for
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Results

• Embeddings obtained with fastText from wikipedia pages with 200k words.

• Alignement on 20k words, convex relaxation on 2.5k words.

en-es en-fr en-de en-ru

Procrustes 82.7 82.7 74.8 51.3

Adversarial∗ 81.7 82.3 74.0 44.0
Iterative Closest Point∗ 82.1 82.3 74.7 47.5
Gromov-Wasserstein 81.7 81.3 71.9 45.1
Ours 82.8 82.3 75.6 45.2

Comparison with supervised and unsupervised state-of-the-art approaches. In
bold, the best among unsupervised methods, ∗ indicates unnormalized vectors.

• Experiments on languages also indicate degree of proximity.
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Discussion

• Stochastic element: correspondence between Xt and Yt - suprising

• Can be interpreted as gradient step on W 2
2 (QXt, Yt), proxy for W 2

2 (QX,Y )

• Empirical measure of Xt and Yt: sampling from measure of X and Y

• Question of convergence W2(µ̂b, ν̂b) to W2(µ, ν).

100 200 400 800 1600

Time 1m47s 2m07s 2m54s 5m34s 22m13s

en-es 68.5 73.8 74.9 75.0 76.3

en-fr 67.4 71.9 74.5 75.6 75.7

en-de 59.1 63.0 64.4 65.8 66.4

en-ru 23.7 27.9 29.9 32.3 33.2
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Left: precision as a function of the batch size, 4k iterations.

Right: Accuracy and objective function value in en-ru, batch-size 2k.
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