Adaptive inference and its relations to sequential decision making

Alexandra Carpentier ${ }^{1}$

> OvGU Magdeburg

Based on joint works with Olga Klopp, Samory Kpotufe, Andréa Locatelli, Matthias Löffler, Richard Nickl

Criteo, Oct. 2nd, 2019

[^0]
Non-Convex Optimization

Problem
Finding/Exploiting the maximum $M(f)$ of an unknown function f.

Non-Convex Optimization

Problem
Finding/Exploiting the maximum $M(f)$ of an unknown function f.

Question

Can we design algorithms that adapt to the difficulty of the problem?

Non-Convex Optimization

Depending on the difficulty of the problem, we would hope to get different performances :

Non-Convex Optimization

Depending on the difficulty of the problem, we would hope to get different performances :

Question

Can we adapt to the hyperparameters?

Scope of this talk

Talk :

- Presentation of adaptive inference in statistics.
- Adaptivity in continuously armed bandits.

ADAPTIVE INFERENCE

Adaptive inference for non-parametric regression

Problem :
Non-parametric regression

Inference (estimation + uncertainty quantification) of the function?

Adaptive inference for non-parametric regression

Problem :
Non-parametric regression

Inference (estimation + uncertainty quantification) of the function?

Adaptive inference for non-parametric regression

Problem :
Non-parametric regression

Inference (estimation + uncertainty quantification) of the function?

The Model
f : function on $[0,1]^{d}$.
n observed data samples $\left(X_{i}, Y_{i}\right)_{i \leq n}$:

$$
Y_{i}=f\left(X_{i}\right)+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where $X_{i} \sim_{i i d} \mathcal{U}_{[0,1]^{d}}$ and ε is an indep. centered noise s. t. $|\varepsilon| \leq 1$.

Adaptive inference for non-parametric regression

Problem :
Non-parametric regression

Inference (estimation + uncertainty quantification) of the function?

The Model
f : function on $[0,1]^{d}$.
n observed data samples $\left(X_{i}, Y_{i}\right)_{i \leq n}$:

$$
Y_{i}=f\left(X_{i}\right)+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where $X_{i} \sim_{i i d} \mathcal{U}_{[0,1]^{d}}$ and ε is an indep. centered noise s. t. $|\varepsilon| \leq 1$.

Adaptive inference for non-parametric regression

Problem :

Non-parametric regression

Inference (estimation + uncertainty quantification) of the function?

The Model
f : function on $[0,1]^{d}$.
n observed data samples $\left(X_{i}, Y_{i}\right)_{i \leq n}$:

$$
Y_{i}=f\left(X_{i}\right)+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where $X_{i} \sim_{i i d} \mathcal{U}_{[0,1]^{d}}$ and ε is an indep. centered noise s. t. $|\varepsilon| \leq 1$.

$$
\mathcal{C}(\alpha)=\{\text { Hoelder ball }(\alpha)\}
$$

E.g. for $\alpha \leq 1$

$$
\left\{f:|f(x)-f(y)| \leq\|x-y\|_{\infty}^{\alpha}\right\}
$$

Adaptive inference for non-parametric regression

Problem :
Non-parametric regression

Inference (estimation + uncertainty quantification) of the function?

Question : If $f \in \mathcal{C}(\alpha)$, then the "optimal" precision of inference should depend on α. Inference adaptive to α ?

Adaptive inference

Adaptive estimation and confidence statements : See

[Lepski, 1990-92], [Juditsky and
Lambert-Lacroix, 1994], [Donoho and Johnstone, 1990-92], [Low, 2004-06], [Birgé and Massart, 1994-00], [Giné and Nickl, 2010], etc.

- "Large" sets $\mathcal{C}_{0} \subset \mathcal{C}_{1}$ e.g. $\mathcal{C}_{0}=: \mathcal{C}(\gamma)$ and $\mathcal{C}_{1}=: \mathcal{C}(\alpha)$ with $\alpha<\gamma$.
- Associated probability distributions \mathbb{P}_{f} for $f \in \mathcal{C}_{1}$
- Receive a dataset of n i.i.d. entries according to \mathbb{P}_{f}

Adaptive inference :
Adaptation to the set \mathcal{C}_{h} when $f \in \mathcal{C}_{h}, h \in\{0,1\}$.

Adaptive inference

Adaptive estimation and confidence statements : See

[Lepski, 1990-92], [Juditsky and
Lambert-Lacroix, 1994], [Donoho and Johnstone, 1990-92], [Low, 2004-06], [Birgé and Massart, 1994-00], [Giné and Nickl, 2010], etc.

- "Large" sets $\mathcal{C}_{0} \subset \mathcal{C}_{1}$ e.g. $\mathcal{C}_{0}=: \mathcal{C}(\gamma)$ and $\mathcal{C}_{1}=: \mathcal{C}(\alpha)$ with $\alpha<\gamma$.
- Associated probability distributions \mathbb{P}_{f} for $f \in \mathcal{C}_{1}$
- Receive a dataset of n i.i.d. entries according to \mathbb{P}_{f}

Estimation :

- Minimax-optimal estimation errors r_{0} (over \mathcal{C}_{0}) and r_{1} (over \mathcal{C}_{1}) in $\|$.$\| norm$

Minimax-opt. est. error

Minimax-optimal $\|.\|_{\infty}$ est. error in non-param. reg. $\mathcal{C}(\alpha)$:

$$
\square\left(\frac{\log (n)}{n}\right)^{\alpha /(2 \alpha+d)}
$$

See [Lepski, 1990-92, etc].

Adaptive inference

Adaptive estimation and confidence statements : See

[Lepski, 1990-92], [Juditsky and
Lambert-Lacroix, 1994], [Donoho and Johnstone, 1990-92], [Low, 2004-06], [Birgé and Massart, 1994-00], [Giné and Nickl, 2010], etc.

- "Large" sets $\mathcal{C}_{0} \subset \mathcal{C}_{1}$ e.g. $\mathcal{C}_{0}=: \mathcal{C}(\gamma)$ and $\mathcal{C}_{1}=: \mathcal{C}(\alpha)$ with $\alpha<\gamma$.
- Associated probability distributions \mathbb{P}_{f} for $f \in \mathcal{C}_{1}$
- Receive a dataset of n i.i.d. entries according to \mathbb{P}_{f}

Adaptive estimation :

- Minimax-optimal estimation errors r_{0} (over \mathcal{C}_{0}) and r_{1} (over \mathcal{C}_{1}) in $\|$.$\| norm$

Adaptive inference

Adaptive estimation and confidence statements : See

[Lepski, 1990-92], [Juditsky and
Lambert-Lacroix, 1994], [Donoho and Johnstone, 1990-92], [Low, 2004-06], [Birgé and Massart, 1994-00], [Giné and Nickl, 2010], etc.

- "Large" sets $\mathcal{C}_{0} \subset \mathcal{C}_{1}$ e.g. $\mathcal{C}_{0}=: \mathcal{C}(\gamma)$ and $\mathcal{C}_{1}=: \mathcal{C}(\alpha)$ with $\alpha<\gamma$.
- Associated probability distributions \mathbb{P}_{f} for $f \in \mathcal{C}_{1}$
- Receive a dataset of n i.i.d. entries according to \mathbb{P}_{f}

Adaptive estimation :

- Minimax-optimal estimation errors r_{0} (over \mathcal{C}_{0}) and r_{1} (over \mathcal{C}_{1}) in $\|$.$\| norm$
- In many models : adaptive estimator \hat{f} exists

Adaptive estimation

$$
\sup _{f \in \infty} \mathbb{E}_{f}\|\hat{f}-f\| \leq \square r_{h}, \quad \forall h \in\{0,1\} .
$$ $f \in \mathcal{C}_{h}$

Adaptive estimators exist in non-param. reg. See [Lepski, 1990-92,

Donoho and Johnstone, 1998, etc].

Adaptive inference

Adaptive estimation and confidence statements : See

[Lepski, 1990-92], [Juditsky and
Lambert-Lacroix, 1994], [Donoho and Johnstone, 1990-92], [Low, 2004-06], [Birgé and Massart, 1994-00], [Giné and Nickl, 2010], etc.

- "Large" sets $\mathcal{C}_{0} \subset \mathcal{C}_{1}$ e.g. $\mathcal{C}_{0}=: \mathcal{C}(\gamma)$ and $\mathcal{C}_{1}=: \mathcal{C}(\alpha)$ with $\alpha<\gamma$.
- Associated probability distributions \mathbb{P}_{f} for $f \in \mathcal{C}_{1}$
- Receive a dataset of n i.i.d. entries according to \mathbb{P}_{f}

Adaptive and honest confidence sets :

- Minimax-optimal estimation errors r_{0}, r_{1} in $\|$.$\| norm$
- Confidence set \hat{C} : contains f and has adaptive diameter

Adaptive inference

Adaptive estimation and confidence statements : See

[Lepski, 1990-92], [Juditsky and
Lambert-Lacroix, 1994], [Donoho and Johnstone, 1990-92], [Low, 2004-06], [Birgé and Massart, 1994-00], [Giné and Nickl, 2010], etc.

- "Large" sets $\mathcal{C}_{0} \subset \mathcal{C}_{1}$ e.g. $\mathcal{C}_{0}=: \mathcal{C}(\gamma)$ and $\mathcal{C}_{1}=: \mathcal{C}(\alpha)$ with $\alpha<\gamma$.
- Associated probability distributions \mathbb{P}_{f} for $f \in \mathcal{C}_{1}$
- Receive a dataset of n i.i.d. entries according to \mathbb{P}_{f}

Adaptive and honest confidence sets :

- Minimax-optimal estimation errors r_{0}, r_{1} in $\|$.$\| norm$
- Confidence set \hat{C} : contains f and has adaptive diameter

η-adapt. and honest conf. set

Honesty :

$$
\sup _{f \in \mathcal{C}_{1}} \mathbb{P}_{f}(f \in \hat{C}) \geq 1-\eta
$$

Adaptivity :
$\sup \mathbb{E}_{f}\|\hat{C}\| \leq \square r_{h}, \quad \forall h \in\{0,1\}$. $f \in \mathcal{C}_{h}$

Adaptive inference

Adaptive estimation and

 confidence statements : See[Lepski, 1990-92], [Juditsky and
Lambert-Lacroix, 1994], [Donoho and Johnstone, 1990-92], [Low, 2004-06], [Birgé and Massart, 1994-00], [Giné and Nickl, 2010], etc.

- "Large" sets $\mathcal{C}_{0} \subset \mathcal{C}_{1}$ e.g. $\mathcal{C}_{0}=: \mathcal{C}(\gamma)$ and $\mathcal{C}_{1}=: \mathcal{C}(\alpha)$ with $\alpha<\gamma$.
- Associated probability distributions \mathbb{P}_{f} for $f \in \mathcal{C}_{1}$
- Receive a dataset of n i.i.d. entries according to \mathbb{P}_{f}

Adaptive and honest

 confidence sets :- Minimax-optimal estimation errors r_{0}, r_{1} in $\|$.$\| norm$
- Confidence set \hat{C} : contains f and has adaptive diameter

Adaptive inference

Adaptive estimation and confidence statements : See

[Lepski, 1990-92], [Juditsky and
Lambert-Lacroix, 1994], [Donoho and Johnstone, 1990-92], [Low, 2004-06], [Birgé and Massart, 1994-00], [Giné and Nickl, 2010], etc.

- "Large" sets $\mathcal{C}_{0} \subset \mathcal{C}_{1}$ e.g. $\mathcal{C}_{0}=: \mathcal{C}(\gamma)$ and $\mathcal{C}_{1}=: \mathcal{C}(\alpha)$ with $\alpha<\gamma$.
- Associated probability distributions \mathbb{P}_{f} for $f \in \mathcal{C}_{1}$
- Receive a dataset of n i.i.d. entries according to \mathbb{P}_{f}

In non-parametric regression :

Adaptive and honest confidence sets do not exist. See [Cai and Low (2004)], [Hoffmann and Nickl (2011)], etc.

Indeed minimax rate for testing between $\mathcal{C}_{0}=\mathcal{C}(\gamma)$ and $\mathcal{C}_{1}=\mathcal{C}(\alpha)$ in $\|.\|_{\infty}$ norm is:

$$
\left(\frac{\log (n)}{n}\right)^{-\alpha /(2 \alpha+d)}=r_{1} \gg r_{0}
$$

Common situation, adaptive inference paradox - see [Gine and Nickl, 2011], [C, Klopp, Löffler, Nickl, 2017] for a systematic study and relations to a testing problem.

Subtle problem : Matrix completion

Problem :
Application : Recommendation system (e.g. Netflix).

Inference (estimation + uncertainty quantification) of the matrix?

Subtle problem : Matrix completion

Problem :
Application: Recommendation system (e.g. Netflix).

Inference (estimation + uncertainty quantification) of the matrix?

Trace Regression Model
f : matrix of dimension $d \times d$. n observed data samples $\left(X_{i}, Y_{i}\right)_{i \leq n}$:

$$
Y_{i}=f_{X_{i}}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where $X_{i} \sim_{i i d} \mathcal{U}_{\{1, \ldots, d\}^{2}}$ and ε is an indep. centered noise s. t. $|\varepsilon| \leq 1$.

Subtle problem : Matrix completion

Problem:
Application: Recommendation system (e.g. Netflix).

Inference (estimation + uncertainty quantification) of the matrix?

Bernoulli Model

f : matrix of dimension $d \times d$.
Data

$$
Y_{i, j}=\left(f_{i, j}+\varepsilon_{i, j}\right) B_{i, j}, \quad(i, j) \in\{1, \ldots, d\}^{2}
$$

where $B_{i, j} \sim_{i i d} \mathcal{B}\left(n / d^{2}\right)$ and ε is an indep. centered noise such that
$|\varepsilon| \leq 1$.

Subtle problem : Matrix completion

Problem :
Application : Recommendation system (e.g. Netflix).

Inference (estimation + uncertainty quantification) of the matrix?
High dimensional regime : $d^{2} \geq n$.

Subtle problem : Matrix completion

Problem :
Application : Recommendation system (e.g. Netflix).

Inference (estimation + uncertainty quantification) of the matrix?
High dimensional regime : $d^{2} \geq n$.

Subtle problem : Matrix completion

Problem :
Application : Recommendation system (e.g. Netflix).

Let for $1 \leq k \leq d$

$$
\mathcal{C}(k)=\left\{f: \operatorname{rank}(f) \leq k,\|f\|_{\infty} \leq 1\right\} .
$$

Question : If $f \in \mathcal{C}(k)$, then the "optimal" precision of inference should depend on k. Inference adaptive to k ?

Inference (estimation + uncertainty quantification) of the matrix?
High dimensional regime : $d^{2} \geq n$.

Adaptive estimation

There exists an adaptive estimator \hat{f} of $f \in \mathcal{C}(k)$ that achieves the minimax-optimal error r_{k} over all $\mathcal{C}(k)$

$$
\mathbb{E}\|\tilde{f}-f\|_{F} \leq \square d \sqrt{\frac{k d}{n}}:=\square r_{k}
$$

where $\|$.$\| is the Frobenius norm, [Keshavan et al., 2009, Cai et$ al., 2010, Kolchinskii et al., 2011, Klopp and Gaiffas, 2015].

In terms of estimation of f, these two models are equivalent.
Question

Adaptive estimation

There exists an adaptive estimator \hat{f} of $f \in \mathcal{C}(k)$ that achieves the minimax-optimal error r_{k} over all $\mathcal{C}(k)$

$$
\mathbb{E}\|\tilde{f}-f\|_{F} \leq \square d \sqrt{\frac{k d}{n}}:=\square r_{k}
$$

where $\|$.$\| is the Frobenius norm, [Keshavan et al., 2009, Cai et$ al., 2010, Kolchinskii et al., 2011, Klopp and Gaiffas, 2015].
Question : Adaptive and honest confidence set scaling with r_{k} ?

Matrix completion : Trace regression

Problem :
Application: Recommendation system (e.g. Netflix).

Inference (estimation + uncertainty quantification) of the matrix?

Trace Regression Model
f : matrix of dimension $d \times d$. n observed data samples $\left(X_{i}, Y_{i}\right)_{i \leq n}$:

$$
Y_{i}=f_{X_{i}}+\varepsilon_{i}, \quad i=1, \ldots, n
$$

where $X_{i} \sim_{i i d} \mathcal{U}_{\{1, \ldots, d\}^{2}}$ and ε is an indep. centered noise s. t. $|\varepsilon| \leq 1$.

Confidence sets : Trace Regression Model

Theorem (C., Klopp, Löffler and Nickl, 2016)
 In the matrix completion"trace regression" model, η-adaptive and honest confidence sets exist.

Dimension reduction in the smaller model not too radical.

Matrix completion : Bernoulli Model

Problem :
Application: Recommendation system (e.g. Netflix).

Inference (estimation + uncertainty quantification) of the matrix?

Bernoulli Model

f : matrix of dimension $d \times d$.
Data

$$
Y_{i, j}=\left(f_{i, j}+\varepsilon_{i, j}\right) B_{i, j}, \quad(i, j) \in\{1, \ldots, d\}^{2}
$$

where $B_{i, j} \sim_{i i d} \mathcal{B}\left(n / d^{2}\right)$ and ε is an indep. centered noise such that $|\varepsilon| \leq 1$.

Customers

Confidence sets : Bernoulli Model

Theorem (C., Klopp, Löffler and Nickl, 2016)

- Bernoulli Model with known noise variance : Adaptive and honest confidence sets exist.
- Bernoulli Model with unknown noise variance : Adaptive and honest confidence sets do not exist .

The two models are not equivalent in this case!

(Simplified) Idea of the proof : Unknown variance

No entries sampled twice! First example : rank one
H_{0} : Random opinions!
Customers

H_{1} : Rank one opinions.
Customers

(Simplified) Idea of the proof : Unknown variance

No entries sample
H_{0} : Random opinions!
Customers

H_{1} : Rank one opinions.
Customers

(Simplified) Idea of the proof : Unknown variance

No entries sample
: Random opinions!
Customers
$\stackrel{\sim}{\sim}$
H_{1} : Rank one opinions.
Customers
$\stackrel{\sim}{\sim}$

(Simplified) Idea of the proof : Unknown variance

No entries sampled twice! First example : rank one
H_{0} : Random opinions!
Customers

H_{1} : Rank one opinions.
Customers

Less than $\frac{n^{4}}{d^{4}}$ such cycles whp \rightarrow distinguishability only if $n \gg d$.

(Simplified) Idea of the proof : Unknown variance

No entries sampled twice!
H_{0} : Random opinions!
Customers

General case : rank k
H_{1} : Rank one opinions.
Customers

(Simplified) Idea of the proof : Unknown variance

No entries sampled twice!
H_{0} : Random opinions!
Customers

General case : rank k
H_{1} : Rank one opinions.
Customers

(Simplified) Idea of the proof : Unknown variance

No entries sampled twice!
H_{0} : Random opinions!
Customers

General case : rank k
H_{1} : Rank one opinions.
Customers

(Simplified) Idea of the proof : Unknown variance

No entries sampled twice!
H_{0} : Random opinions!
Customers

General case : rank k
H_{1} : Rank one opinions.
Customers

Less than $\frac{n^{4}}{d^{4} k^{3}}$ correct cycles (taking rank groups into account) \rightarrow distinguishability only if $n \gg k^{3 / 4} d$.

Conclusion on adaptive inference

Adaptive inference paradox: adaptive estimation is generally possible and adaptive uncertainty quantification mostly not.

We have seen that in the non-parametric regression with L_{∞} norm:

- Adaptive estimation is possible
- Adaptive and honest confidence sets do not exist Typical example of adaptive inference paradox.

ADAPTIVITY IN \mathcal{X} ARMED BANDITS

Non-Convex Optimization

Problem
Finding/Exploiting the maximum $M(f)$ of an unknown function f.

Question

Can we desig algorithms that adapt to the difficulty of the problem?

Non-Convex Optimization

Problem
Finding/Exploiting the maximum $M(f)$ of an unknown function f.

Question

Can we design algorithms that adapt to the difficulty of the problem?

Non-Convex Optimization

Depending on the difficulty of the problem, we would hope to get different performances :

Question

Can we adapt to the hyperparameters?

\mathcal{X}-armed bandit problem

Game:

- Parameters: function f with

$$
M(f)=\max _{x} f(x), n
$$

- for $t=1, \ldots, n$
- learner picks $X_{t} \in[0,1]^{d}$
- receives $Y_{t}=f\left(X_{t}\right)+\epsilon_{t}, \epsilon$ indep. noise
s.t. $\mathbb{E} \epsilon_{t}=0,\left|\epsilon_{t}\right| \leq 1$
- output $x(n) \in[0,1]^{d}$

\mathcal{X}-armed bandit problem

Game:

- Parameters : function f with $M(f)=\max _{x} f(x), n$
- for $t=1, \ldots, n$
- learner picks $X_{t} \in[0,1]^{d}$
- receives $Y_{t}=f\left(X_{t}\right)+\epsilon_{t}, \epsilon$ indep. noise
s.t. $\mathbb{E} \epsilon_{t}=0,\left|\epsilon_{t}\right| \leq 1$

- output $x(n) \in[0,1]^{d}$

\mathcal{X}-armed bandit problem

Game:

- Parameters : function f with $M(f)=\max _{x} f(x), n$
- for $t=1, \ldots, n$
- learner picks $X_{t} \in[0,1]^{d}$
- receives $Y_{t}=f\left(X_{t}\right)+\epsilon_{t}, \epsilon$ indep. noise
s.t. $\mathbb{E} \epsilon_{t}=0,\left|\epsilon_{t}\right| \leq 1$

- output $x(n) \in[0,1]^{d}$

\mathcal{X}-armed bandit problem

Game:

- Parameters : function f with $M(f)=\max _{x} f(x), n$
- for $t=1, \ldots, n$
- learner picks $X_{t} \in[0,1]^{d}$
- receives $Y_{t}=f\left(X_{t}\right)+\epsilon_{t}, \epsilon$ indep. noise
s.t. $\mathbb{E} \epsilon_{t}=0,\left|\epsilon_{t}\right| \leq 1$

- output $x(n) \in[0,1]^{d}$

\mathcal{X}-armed bandit problem

Game:

- Parameters : function f with $M(f)=\max _{x} f(x), n$
- for $t=1, \ldots, n$
- learner picks $X_{t} \in[0,1]^{d}$
- receives $Y_{t}=f\left(X_{t}\right)+\epsilon_{t}, \epsilon$ indep. noise
s.t. $\mathbb{E} \epsilon_{t}=0,\left|\epsilon_{t}\right| \leq 1$

- output $x(n) \in[0,1]^{d}$

\mathcal{X}-armed bandit problem

Game:

- Parameters : function f with $M(f)=\max _{x} f(x), n$
- for $t=1, \ldots, n$
- learner picks $X_{t} \in[0,1]^{d}$
- receives $Y_{t}=f\left(X_{t}\right)+\epsilon_{t}, \epsilon$ indep. noise
s.t. $\mathbb{E} \epsilon_{t}=0,\left|\epsilon_{t}\right| \leq 1$

- output $x(n) \in[0,1]^{d}$

\mathcal{X}-armed bandit problem

Game:

- Parameters : function f with $M(f)=\max _{x} f(x), n$
- for $t=1, \ldots, n$
- learner picks $X_{t} \in[0,1]^{d}$
- receives $Y_{t}=f\left(X_{t}\right)+\epsilon_{t}, \epsilon$ indep. noise
s.t. $\mathbb{E} \epsilon_{t}=0,\left|\epsilon_{t}\right| \leq 1$

- output $x(n) \in[0,1]^{d}$

Performance measures:

- Simple regret:
$r_{n}=M(f)-f(x(n))$
- Cumulative regret:
$R_{n}=n M(f)-\sum_{t=1}^{n} f\left(X_{t}\right)$

Classical result for stochastic bandits

K-armed stochastic bandits
In the discrete case - f constant by parts on K known sets - classical stochastic bandits.

Idea
Approximate the continuous function f in K_{n} 'relevant' parts - this will depend on the regularity of f.

Classical result for stochastic bandits

K-armed stochastic bandits
In the discrete case - f constant by parts on K known sets - classical stochastic bandits.

The minimax regret satisfies (up to logarithmic terms)
$\inf _{\text {algo } \mathcal{A}} \sup _{K \text {-discrete } f} r_{n}(\mathcal{A}, f) \approx \sqrt{\frac{K}{n}}$,
and
$\inf _{\text {algo } \mathcal{A}} \sup _{K \text {-discrete } f} R_{n}(\mathcal{A}, f) \approx \sqrt{n K}$.

Classical result for stochastic bandits

K-armed stochastic bandits
In the discrete case - f constant by parts on K known sets - classical stochastic bandits.

The minimax regret satisfies (up to logarithmic terms)

$$
\begin{array}{ll}
\inf _{\text {algo } \mathcal{A}} & \sup _{K \text {-discrete } f} r_{n}(\mathcal{A}, f) \approx \sqrt{\frac{K}{n}}, \\
\text { and } \\
\inf _{\text {algo } \mathcal{A}} & \sup _{K \text {-discrete } f} R_{n}(\mathcal{A}, f) \approx \sqrt{n K} .
\end{array}
$$

Idea

Approximate the continuous function f in K_{n} 'relevant' parts - this will depend on the regularity of f.

Assumptions on f Parametrize f from easy to hard problems.

Assumptions on f

 Parametrize f from easy to hard problems.- Regularity condition: $\exists \alpha>0$ s.t. $\forall x, y$:

$$
|f(x)-f(y)| \leq\|x-y\|_{\infty}^{\alpha},
$$

For $\alpha \leq 1$, Hölder assumption

Assumptions on f

 Parametrize f from easy to hard problems.- Regularity condition: $\exists \alpha>0$ s.t. $\forall x, y$:

$$
|f(x)-f(y)| \leq\|x-y\|_{\infty}^{\alpha},
$$

For $\alpha \leq 1$, Hölder assumption

Assumptions on f

 Parametrize f from easy to hard problems.- Regularity condition: $\exists \alpha>0$ s.t. $\forall x, y$:

$$
|f(x)-f(y)| \leq\|x-y\|_{\infty}^{\alpha},
$$

For $\alpha \leq 1$, Hölder assumption

- Margin condition: $\exists \beta \geq 0$ s.t.:

$$
\operatorname{Vol}(x: M(f)-f(x) \leq \Delta) \leq \Delta^{\beta}
$$

No restriction for $\beta=0$, larger β
corresponds to easier problem

Assumptions on f

 Parametrize f from easy to hard problems.- Regularity condition: $\exists \alpha>0$ s.t. $\forall x, y$:

$$
|f(x)-f(y)| \leq\|x-y\|_{\infty}^{\alpha}
$$

For $\alpha \leq 1$, Hölder assumption

- Margin condition: $\exists \beta \geq 0$ s.t.:

$$
\operatorname{Vol}(x: M(f)-f(x) \leq \Delta) \leq \Delta^{\beta}
$$

No restriction for $\beta=0$, larger β corresponds to easier problem

large β

Lower bounds

Define $\mathcal{P}(\alpha, \beta)$ the class of functions that satisfy these assumptions.

Theorem: Lower-bound for α, β known [Bubeck et al. 11]

For any strategy that performs at most n noisy function evaluations, it holds that:

$$
\begin{aligned}
& \sup _{P \in \mathcal{P}(\alpha, \beta)} \mathbb{E}_{P}\left[r_{n}\right] \geq \square n^{-\frac{\alpha}{2 \alpha+d-\alpha \beta}}:=\square r_{\alpha, \beta}, \\
& \sup _{P \in \mathcal{P}(\alpha, \beta)} \mathbb{E}_{P}\left[R_{n}\right] \geq \square n^{1-\frac{\alpha}{2 \alpha+d-\alpha \beta}}:=\square R_{\alpha, \beta},
\end{aligned}
$$

where \square does not depend on the strategy and note that $R_{\alpha, \beta}=n r_{\alpha, \beta}$.

Goal: design procedures without access to α, β with optimal regret

Case α known

See e.g. [Agrawal (1995), Kleinberg (2004), Auer et al. (2007), Kleinberg et al. (2008), Bubeck et al. (2011a,b,c), Cope (2009), Munos (2014), Valko et al (2015)], etc.

Optimistic strategies (e.g. HOO in [Bubeck et al. 11]): use the knowledge of α to construct local (multi-scale) upper-confidence bounds on f, and choose next X_{t} optimistically.

Our strategy: similar intuition but works hierarchically (at a single scale), only refining the partition in promising cells of the previous partition.

Case α known

See e.g. [Agrawal (1995), Kleinberg (2004), Auer et al. (2007), Kleinberg et al. (2008), Bubeck et al. (2011a,b,c), Cope (2009), Munos (2014), Valko et al (2015)], etc.

Optimistic strategies (e.g. HOO in [Bubeck et al. 11]): use the knowledge of α to construct local (multi-scale) upper-confidence bounds on f, and choose next X_{t} optimistically.

Our strategy: similar intuition but works hierarchically (at a single scale), only refining the partition in promising cells of the previous partition.

Case α known

Theorem: Upper-bound for α known [Locatelli, C, 2018]

Our strategy for opimisation is such that with probability at least $1-n^{-1}$

$$
\sup _{P \in \mathcal{P}(\alpha, \beta)} r_{n} \leq \tilde{\square} r_{\alpha, \beta}, \quad \mathbb{E}_{P} R_{n} \leq \tilde{\square} R_{\alpha, \beta} .
$$

See also [Bubeck et al (2011), Minsker (2013), Bull (2014), Valko et al (2015)] etc.

Adaptivity?

The algorithm naturally adapts to β but needs α as a parameter.

Question

Can we adapt to α ?

Adaptivity?

The algorithm naturally adapts to β but needs α as a parameter.

Question

Can we adapt to α ?
Reminder from adaptive inference :

- Adaptive estimation is possible in non-parametric regression
- Adaptive and honest confidence sets do not exist in non-parametric regression

Adaptivity?

The algorithm naturally adapts to β but needs α as a parameter.

Question

Can we adapt to α ?
Reminder from adaptive inference :

- Adaptive estimation is possible in non-parametric regression
- Adaptive and honest confidence sets do not exist in non-parametric regression

Question

Is the \mathcal{X}-armed bandit problem closer to adaptive estimation or adaptive and honest uncertainty quantification?

Adaptivity for simple regret

 (optimisation)α-Adaptive strategy:

- Split budget in $\log ^{2} n$ chunks of same size
- Run previous strategy with

$$
\alpha_{i}=\frac{i}{\log n} \text { for all } i
$$

- Aggregate recommendations

$$
\text { Idea: } \exists \alpha_{i^{*}} \text { s.t.: } \alpha-\frac{1}{\log (n)} \leq \alpha_{i^{*}} \leq \alpha
$$

Adaptivity for simple regret

 (optimisation)
α-Adaptive strategy:

- Split budget in $\log ^{2} n$ chunks of same size
- Run previous strategy with $\alpha_{i}=\frac{i}{\log n}$ for all i
- Aggregate recommendations

Idea: $\exists \alpha_{i^{*}}$ s.t.: $\alpha-\frac{1}{\log (n)} \leq \alpha_{i^{*}} \leq \alpha$

Adaptivity for simple regret

 (optimisation)
α-Adaptive strategy:

- Split budget in $\log ^{2} n$ chunks of same size
- Run previous strategy with $\alpha_{i}=\frac{i}{\log n}$ for all i
- Aggregate recommendations

Idea: $\exists \alpha_{i^{*}}$ s.t.: $\alpha-\frac{1}{\log (n)} \leq \alpha_{i^{*}} \leq \alpha$

- Strategy 1: cross-validate [Grill et al. 15]
- Strategy 2: recommend $x(n) \in \bigcap_{i \leq \hat{I}} s_{n, \alpha_{i}}[$ LCK 17]

Recovers the optimal rate but adaptively!

Adaptivity for simple regret

 (optimisation)
α-Adaptive strategy:

- Split budget in $\log ^{2} n$ chunks of same size
- Run previous strategy with
$\alpha_{i}=\frac{i}{\log n}$ for all i
- Aggregate recommendations

Idea: $\exists \alpha_{i^{*}}$ s.t.: $\alpha-\frac{1}{\log (n)} \leq \alpha_{i^{*}} \leq \alpha$

- Strategy 1: cross-validate [Grill et al. 15]
- Strategy 2: recommend $x(n) \in \bigcap_{i \leq \hat{I}} s_{n, \alpha_{i}}[$ LCK 17]

Recovers the optimal rate but adaptively!

Adaptivity for simple regret (optimisation)

α-Adaptive strategy:

- Split budget in $\log ^{2} n$ chunks of same size
- Run previous strategy with $\alpha_{i}=\frac{i}{\log n}$ for all i
- Aggregate recommendations

Idea: $\exists \alpha_{i^{*}}$ s.t.: $\alpha-\frac{1}{\log (n)} \leq \alpha_{i^{*}} \leq \alpha$
Theorem: Upper-bound simple regret [Locatelli, C, 2018]

Our strategy yields whp

$$
\sup _{\alpha, \beta \in S} \sup _{P \in \mathcal{P}(\alpha, \beta)} \frac{r_{n}}{\log (n)^{u} r_{\alpha, \beta}} \leq \square
$$

Adaptivity for Cumulative regret

Intuition: previous strategy favors exploration (linear regret)
Can we adaptively balance exploration/exploitation?

Theorem: Impossibility result for adaptive cumulative regret [Locatelli, C, 2018]

Fix $\gamma>\alpha>0$ and β. Any strategy with (near)-optimal regret bounded by $\square R_{\alpha, \beta}$ uniformly over $\mathcal{P}(\alpha, \beta)$ is such that

In fact something more refined holds for any algorithm with given rate on $\mathcal{P}(\gamma, \beta)$ or $\mathcal{P}(\alpha, \beta)$.

Adaptivity for Cumulative regret

Intuition: previous strategy favors exploration (linear regret)
Can we adaptively balance exploration/exploitation?

In fact something more refined holds for any algorithm with given rate on $\mathcal{P}(\gamma, \beta)$ or $\mathcal{P}(\alpha, \beta)$.

Adaptivity for Cumulative regret

Intuition: previous strategy favors exploration (linear regret)
Can we adaptively balance exploration/exploitation?

Theorem: Impossibility result for adaptive cumulative regret [Locatelli, C, 2018]

Fix $\gamma>\alpha>0$ and β. Any strategy with (near)-optimal regret bounded by $\tilde{\square} R_{\alpha, \beta}$ uniformly over $\mathcal{P}(\alpha, \beta)$ is such that

$$
\sup _{P \in \mathcal{P}(\gamma, \beta)} \mathbb{E}_{P}\left[R_{n}\right] \geq \tilde{\square} R_{\alpha, \beta} .
$$

In fact something more refined holds for any algorithm with given rate on $\mathcal{P}(\gamma, \beta)$ or $\mathcal{P}(\alpha, \beta)$.

Conclusion

Adaptivity possible for simple regret but not for cumulative regret.

- Simple regret is in essence closer to adaptive estimation : adaptation possible
- Cumulative regret is in essence closer to adaptive and honest confidence sets : adaptation impossible

More systematic relation to adaptivity in active learning?

[^0]: ${ }^{1}$ Partly funded by the DFG EN CA1488, the CRC 1294, the GK 2297, thn CK 9122

