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Non-Convex Optimization
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Finding/Exploiting the maximum M(f) of an unknown
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Non-Convex Optimization
Depending on the difficulty of the problem, we would hope to
get different performances :

Question

Can we adapt to the hyperparameters?



Scope of this talk

Talk :

I Presentation of adaptive inference in statistics.

I Adaptivity in continuously armed bandits.



ADAPTIVE INFERENCE
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The Model
f : function on [0, 1]d.
n observed data samples (Xi, Yi)i≤n :

Yi = f(Xi) + εi, i = 1, . . . , n,

where Xi ∼iid U[0,1]d and ε is an
indep. centered noise s. t. |ε| ≤ 1.
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The Model
f : function on [0, 1]d.
n observed data samples (Xi, Yi)i≤n :

Yi = f(Xi) + εi, i = 1, . . . , n,

where Xi ∼iid U[0,1]d and ε is an
indep. centered noise s. t. |ε| ≤ 1.

C(α) = {Hoelder ball (α)}.

E.g. for α ≤ 1

{f : |f(x)− f(y)| ≤ ‖x− y‖α∞}.



Adaptive inference for non-parametric regression

Problem :
Non-parametric regression
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Question : If f ∈ C(α), then the
“optimal” precision of inference
should depend on α. Inference
adaptive to α?



Adaptive inference

Adaptive estimation and
confidence statements : See

[Lepski, 1990-92], [Juditsky and

Lambert-Lacroix, 1994], [Donoho and Johnstone,

1990-92], [Low, 2004-06], [Birgé and Massart,

1994-00], [Giné and Nickl, 2010], etc.

I “Large” sets C0 ⊂ C1
e.g. C0 =: C(γ) and C1 =: C(α)

with α < γ.

I Associated probability
distributions Pf for f ∈ C1

I Receive a dataset of n
i.i.d. entries according to Pf

Adaptive inference :
Adaptation to the set Ch when
f ∈ Ch, h ∈ {0, 1}.
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I “Large” sets C0 ⊂ C1
e.g. C0 =: C(γ) and C1 =: C(α)

with α < γ.

I Associated probability
distributions Pf for f ∈ C1

I Receive a dataset of n
i.i.d. entries according to Pf

Estimation :

I Minimax-optimal estimation
errors r0 (over C0) and r1
(over C1) in ‖.‖ norm

Minimax-opt. est. error

rh = inf
f̃ est.

sup
f∈Ch

Ef‖f̃−f‖, h ∈ {0, 1}.

Minimax-optimal ‖.‖∞ est. error
in non-param. reg. C(α) :

�
( log(n)

n

)α/(2α+d)
.

See [Lepski, 1990-92, etc].
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Adaptive estimation and
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I “Large” sets C0 ⊂ C1
e.g. C0 =: C(γ) and C1 =: C(α)

with α < γ.

I Associated probability
distributions Pf for f ∈ C1

I Receive a dataset of n
i.i.d. entries according to Pf

Adaptive estimation :

I Minimax-optimal estimation
errors r0 (over C0) and r1
(over C1) in ‖.‖ norm

I In many models : adaptive
estimator f̂ exists

Adaptive estimation

sup
f∈Ch

Ef‖f̂ − f‖ ≤ �rh, ∀h ∈ {0, 1}.

Adaptive estimators exist in
non-param. reg. See [Lepski, 1990-92,

Donoho and Johnstone, 1998, etc].
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e.g. C0 =: C(γ) and C1 =: C(α)

with α < γ.

I Associated probability
distributions Pf for f ∈ C1
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Adaptive and honest
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η-adapt. and honest conf. set

Honesty :

sup
f∈C1

Pf (f ∈ Ĉ) ≥ 1− η.

Adaptivity :

sup
f∈Ch

Ef‖Ĉ‖ ≤ �rh, ∀h ∈ {0, 1}.
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Adaptive inference

Adaptive estimation and
confidence statements : See

[Lepski, 1990-92], [Juditsky and

Lambert-Lacroix, 1994], [Donoho and Johnstone,

1990-92], [Low, 2004-06], [Birgé and Massart,

1994-00], [Giné and Nickl, 2010], etc.

I “Large” sets C0 ⊂ C1
e.g. C0 =: C(γ) and C1 =: C(α)

with α < γ.

I Associated probability
distributions Pf for f ∈ C1

I Receive a dataset of n
i.i.d. entries according to Pf

In non-parametric regression :
Adaptive and honest confidence sets do
not exist. See [Cai and Low (2004)],
[Hoffmann and Nickl (2011)], etc.

Indeed minimax rate for testing
between C0 = C(γ) and C1 = C(α) in
‖.‖∞ norm is:( log(n)

n

)−α/(2α+d)

= r1 � r0.

Common situation, adaptive
inference paradox - see [Gine and
Nickl, 2011], [C, Klopp, Löffler, Nickl,
2017] for a systematic study and
relations to a testing problem.
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system (e.g. Netflix).
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Trace Regression Model
f : matrix of dimension d× d.
n observed data samples (Xi, Yi)i≤n :

Yi = fXi + εi, i = 1, . . . , n,

where Xi ∼iid U{1,...,d}2 and ε is an
indep. centered noise s. t. |ε| ≤ 1.
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Bernoulli Model
f : matrix of dimension d× d.
Data

Yi,j = (fi,j+εi,j)Bi,j , (i, j) ∈ {1, . . . , d}2,

where Bi,j ∼iid B(n/d2) and ε is an
indep. centered noise such that
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Inference (estimation + uncertainty
quantification) of the matrix?

Let for 1 ≤ k ≤ d

C(k) = {f : rank(f) ≤ k, ‖f‖∞ ≤ 1}.

Question : If f ∈ C(k), then the
“optimal” precision of inference
should depend on k. Inference
adaptive to k?

High dimensional regime : d2 ≥ n.



Adaptive estimation

There exists an adaptive estimator f̂ of f ∈ C(k) that achieves
the minimax-optimal error rk over all C(k)

E‖f̃ − f‖F ≤ �d
√
kd

n
:= �rk.

where ‖.‖ is the Frobenius norm, [Keshavan et al., 2009, Cai et
al., 2010, Kolchinskii et al., 2011, Klopp and Gaiffas, 2015].

In terms of estimation of f , these two models are equivalent.

Question : Adaptive and honest confidence set scaling with rk?
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Matrix completion : Trace regression

Problem :
Application : Recommendation
system (e.g. Netflix).
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Trace Regression Model
f : matrix of dimension d× d.
n observed data samples (Xi, Yi)i≤n :

Yi = fXi + εi, i = 1, . . . , n,

where Xi ∼iid U{1,...,d}2 and ε is an
indep. centered noise s. t. |ε| ≤ 1.
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Confidence sets : Trace Regression Model

Theorem (C., Klopp, Löffler and Nickl, 2016)

In the matrix completion “trace regression” model, η-adaptive
and honest confidence sets exist.

Dimension reduction in the smaller model not too radical.



Matrix completion : Bernoulli Model

Problem :
Application : Recommendation
system (e.g. Netflix).
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Bernoulli Model
f : matrix of dimension d× d.
Data

Yi,j = (fi,j+εi,j)Bi,j , (i, j) ∈ {1, . . . , d}2,

where Bi,j ∼iid B(n/d2) and ε is an
indep. centered noise such that
|ε| ≤ 1.
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Confidence sets : Bernoulli Model

Theorem (C., Klopp, Löffler and Nickl, 2016)

I Bernoulli Model with known noise variance :
Adaptive and honest confidence sets exist.

I Bernoulli Model with unknown noise variance :
Adaptive and honest confidence sets do not exist .

The two models are not equivalent in this case!



(Simplified) Idea of the proof : Unknown variance
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d4k3 correct cycles (taking rank groups into account)

→ distinguishability only if n� k3/4d.



Conclusion on adaptive inference

Adaptive inference paradox: adaptive estimation is generally
possible and adaptive uncertainty quantification mostly not.

We have seen that in the non-parametric regression with L∞
norm:

I Adaptive estimation is possible

I Adaptive and honest confidence sets do not exist

Typical example of adaptive inference paradox.
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Non-Convex Optimization
Depending on the difficulty of the problem, we would hope to
get different performances :

Question

Can we adapt to the hyperparameters?
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I output x(n) ∈ [0, 1]d
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X -armed bandit problem
Game:

I Parameters : function f with
M(f) = maxx f(x), n

I for t = 1, ..., n

I learner picks Xt ∈ [0, 1]d

I receives Yt = f(Xt) + εt, ε
indep. noise
s.t. Eεt = 0, |εt| ≤ 1

I output x(n) ∈ [0, 1]d

Performance measures:

I Simple regret:
rn = M(f)− f(x(n))

I Cumulative regret:
Rn = nM(f)−

∑n
t=1 f(Xt)

M(f)

X

X

X

X



Classical result for stochastic bandits

K−armed stochastic bandits

In the discrete case - f constant by
parts on K known sets - classical
stochastic bandits.

Idea

Approximate the continuous function f in Kn ‘relevant’ parts - this
will depend on the regularity of f .
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Assumptions on f
Parametrize f from easy to hard
problems.

I Regularity condition: ∃α > 0
s.t. ∀x, y:

|f(x)− f(y)| ≤ ‖x− y‖α∞,
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For α ≤ 1, Hölder assumption

I Margin condition: ∃β ≥ 0 s.t.:

Vol(x : M(f)− f(x) ≤ ∆) ≤ ∆β

No restriction for β = 0, larger β

corresponds to easier problem

M(f)

M(f)

 small

 large

β

β



Lower bounds
Define P(α, β) the class of functions that satisfy these
assumptions.

Theorem: Lower-bound for α, β known [Bubeck et al. 11]

For any strategy that performs at most n noisy function
evaluations, it holds that:

sup
P∈P(α,β)

EP [rn] ≥ �n−
α

2α+d−αβ := �rα,β,

sup
P∈P(α,β)

EP [Rn] ≥ �n1−
α

2α+d−αβ := �Rα,β,

where � does not depend on the strategy and note that
Rα,β = nrα,β.

Goal: design procedures without access to α, β with optimal
regret



Case α known
See e.g. [Agrawal (1995), Kleinberg
(2004), Auer et al. (2007), Kleinberg et
al. (2008), Bubeck et al. (2011a,b,c),
Cope (2009), Munos (2014), Valko et al
(2015)], etc.

Optimistic strategies (e.g. HOO in
[Bubeck et al. 11]): use the knowledge
of α to construct local (multi-scale)
upper-confidence bounds on f , and
choose next Xt optimistically.

Our strategy: similar intuition but

works hierarchically (at a single scale),

only refining the partition in promising

cells of the previous partition.
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Case α known

Theorem: Upper-bound for α known [Locatelli, C, 2018]

Our strategy for opimisation is such that with probability at
least 1− n−1

sup
P∈P(α,β)

rn ≤ �̃rα,β, EPRn ≤ �̃Rα,β.

See also [Bubeck et al (2011), Minsker (2013), Bull (2014),
Valko et al (2015)] etc.
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Adaptivity?
The algorithm naturally adapts to β but needs α as a
parameter.

Question

Can we adapt to α?

Reminder from adaptive inference :

I Adaptive estimation is possible in non-parametric
regression

I Adaptive and honest confidence sets do not exist in
non-parametric regression

Question

Is the X -armed bandit problem closer to adaptive estimation or
adaptive and honest uncertainty quantification?



Adaptivity for simple regret
(optimisation)
α-Adaptive strategy:

I Split budget in log2 n chunks of
same size

I Run previous strategy with
αi = i

logn
for all i

I Aggregate recommendations

Idea: ∃αi∗ s.t.: α− 1
log(n)

≤ αi∗ ≤ α
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i≤Î sn,αi [LCK 17]

Recovers the optimal rate but
adaptively!

M(f)

M(f)

M(f)

Too large

Just right

Too small



Adaptivity for simple regret
(optimisation)
α-Adaptive strategy:

I Split budget in log2 n chunks of
same size

I Run previous strategy with
αi = i

logn
for all i

I Aggregate recommendations

Idea: ∃αi∗ s.t.: α− 1
log(n)

≤ αi∗ ≤ α

Theorem: Upper-bound simple
regret [Locatelli, C, 2018]

Our strategy yields whp

sup
α,β∈S

sup
P∈P(α,β)

rn
log(n)urα,β

≤ �.
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M(f)

Too large

Just right

Too small



Adaptivity for Cumulative regret

Intuition: previous strategy favors exploration (linear regret)

Can we adaptively balance exploration/exploitation?

Theorem: Impossibility result for adaptive cumulative
regret [Locatelli, C, 2018]

Fix γ > α > 0 and β. Any strategy with (near)-optimal regret
bounded by �̃Rα,β uniformly over P(α, β) is such that

sup
P∈P(γ,β)

EP [Rn] ≥ �̃Rα,β.

In fact something more refined holds for any algorithm with
given rate on P(γ, β) or P(α, β).
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regret [Locatelli, C, 2018]

Fix γ > α > 0 and β. Any strategy with (near)-optimal regret
bounded by �̃Rα,β uniformly over P(α, β) is such that
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P∈P(γ,β)
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Conclusion

Adaptivity possible for simple regret but not for cumulative
regret.

I Simple regret is in essence closer to adaptive estimation :
adaptation possible

I Cumulative regret is in essence closer to adaptive and
honest confidence sets : adaptation impossible

More systematic relation to adaptivity in active learning?


