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A Large Random Linear System

We are interested in the equation

x = 1+
A

α
√
N
x

where

I x is a N × 1 unknown vector,

I 1 is a N × 1 vector of ones,

I A is a N ×N random matrix with i.i.d. entries N (0, 1),

I α is a positive scalar parameter to be tuned.

Questions

I Does this system admit a solution x =

(
I −

A

α
√
N

)−1

1 ?

I Conditions to get a solution x with positive components?

Motivation

I Feasibility and stability in ecological networks.
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Confinement of the spectrum of A√
N

Theorem: The Circular Law (Ginibre, Metha, Girko, Tao & Vu, etc.)

The spectrum of A√
N

converges to the uniform probability on the disc
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Existence of a solution .. with no positive components

I From the spectrum confinement property,

x =

(
I −

A

α
√
N

)−1

1 exists for α > 1

I but

xk ∼ N
(
1,

1

α2 − 1

)
i.i.d. as N →∞

I As a consequence

P
{

inf
k∈[N ]

xk > 0

}
∼ P {xk > 0}N −−−−→

N→∞
0 .

⇒ no positive solutions
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Positivity of the solution

Consider now the case α = αN −−−−→
N→∞

∞

Theorem (phase transition, Bizeul-N. ’19)

I If
αN ≤δ

√
2 log(N) ⇔ αN ≤ (1− δ)

√
2 log(N)

then

P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

0 ⇒ no positive solutions.

I If
αN ≥δ

√
2 log(N) ⇔ αN ≥ (1 + δ)

√
2 log(N)

then

P
{

inf
k∈[N ]

xk > 0

}
−−−−→
N→∞

1 ⇒ positive solutions.
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Phase transition (gaussian case)

I We plot the frequency (over 500 trials) of positive solutions for the linear system

x = 1+
1

κ
√

log(N)

A
√
N
x

as a function of the normalization parameter κ.
I As expected, we observe threshold phenomenon around the critical value κ =

√
2.
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A heuristics for the critical scaling

1. Unfold the resolvent and write

xk = e
∗
k

(
I −

A

α
√
N

)−1

1

= 1 +
Zk

α
+

Rk

α2
(remainder term)

2. Notice that

Zk ∼ N (0, 1) i.i.d. and min
k∈[N ]

Zk ∼ −
√

2 log(N)

by extreme value theory.

3. Conclude

min
k∈[N]

xk ≈ 1 +
mink∈[N] Zk

α
+ · · · ≈ 1−

√
2 log(N)

α

4. The key control of the remainder term Rk can be proved via gaussian
concentration.

maxk∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 and
mink∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 .

Thank you for your attention!

7



A heuristics for the critical scaling

1. Unfold the resolvent and write

xk = e
∗
k

(
I −

A

α
√
N

)−1

1 = 1 +
Zk

α
+

Rk

α2
(remainder term)

2. Notice that

Zk ∼ N (0, 1) i.i.d. and min
k∈[N ]

Zk ∼ −
√

2 log(N)

by extreme value theory.

3. Conclude

min
k∈[N]

xk ≈ 1 +
mink∈[N] Zk

α
+ · · · ≈ 1−

√
2 log(N)

α

4. The key control of the remainder term Rk can be proved via gaussian
concentration.

maxk∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 and
mink∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 .

Thank you for your attention!

7



A heuristics for the critical scaling

1. Unfold the resolvent and write

xk = e
∗
k

(
I −

A

α
√
N

)−1

1 = 1 +
Zk

α
+

Rk

α2
(remainder term)

2. Notice that

Zk ∼ N (0, 1) i.i.d. and min
k∈[N ]

Zk ∼ −
√

2 log(N)

by extreme value theory.

3. Conclude

min
k∈[N]

xk ≈ 1 +
mink∈[N] Zk

α
+ · · · ≈ 1−

√
2 log(N)

α

4. The key control of the remainder term Rk can be proved via gaussian
concentration.

maxk∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 and
mink∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 .

Thank you for your attention!

7



A heuristics for the critical scaling

1. Unfold the resolvent and write

xk = e
∗
k

(
I −

A

α
√
N

)−1

1 = 1 +
Zk

α
+

Rk

α2
(remainder term)

2. Notice that

Zk ∼ N (0, 1) i.i.d. and min
k∈[N ]

Zk ∼ −
√

2 log(N)

by extreme value theory.

3. Conclude

min
k∈[N]

xk ≈ 1 +
mink∈[N] Zk

α
+ · · ·

≈ 1−
√

2 log(N)

α

4. The key control of the remainder term Rk can be proved via gaussian
concentration.

maxk∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 and
mink∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 .

Thank you for your attention!

7



A heuristics for the critical scaling

1. Unfold the resolvent and write

xk = e
∗
k

(
I −

A

α
√
N

)−1

1 = 1 +
Zk

α
+

Rk

α2
(remainder term)

2. Notice that

Zk ∼ N (0, 1) i.i.d. and min
k∈[N ]

Zk ∼ −
√

2 log(N)

by extreme value theory.

3. Conclude

min
k∈[N]

xk ≈ 1 +
mink∈[N] Zk

α
+ · · · ≈ 1−

√
2 log(N)

α

4. The key control of the remainder term Rk can be proved via gaussian
concentration.

maxk∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 and
mink∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 .

Thank you for your attention!

7



A heuristics for the critical scaling

1. Unfold the resolvent and write

xk = e
∗
k

(
I −

A

α
√
N

)−1

1 = 1 +
Zk

α
+

Rk

α2
(remainder term)

2. Notice that

Zk ∼ N (0, 1) i.i.d. and min
k∈[N ]

Zk ∼ −
√

2 log(N)

by extreme value theory.

3. Conclude

min
k∈[N]

xk ≈ 1 +
mink∈[N] Zk

α
+ · · · ≈ 1−

√
2 log(N)

α

4. The key control of the remainder term Rk can be proved via gaussian
concentration.

maxk∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 and
mink∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 .

Thank you for your attention!

7



A heuristics for the critical scaling

1. Unfold the resolvent and write

xk = e
∗
k

(
I −

A

α
√
N

)−1

1 = 1 +
Zk

α
+

Rk

α2
(remainder term)

2. Notice that

Zk ∼ N (0, 1) i.i.d. and min
k∈[N ]

Zk ∼ −
√

2 log(N)

by extreme value theory.

3. Conclude

min
k∈[N]

xk ≈ 1 +
mink∈[N] Zk

α
+ · · · ≈ 1−

√
2 log(N)

α

4. The key control of the remainder term Rk can be proved via gaussian
concentration.

maxk∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 and
mink∈[N ]Rk

α
√

2 log(N)

P−−−−→
N→∞

0 .

Thank you for your attention!

7


