A PAC-Bayes perspective on binary-activated deep neural networks

Benjamin Guedj https://bguedj.github.io

> MLRW #5, Criteo October 2, 2019

Learning is to be able to generalise!

- Learning is to be able to **generalise**!
- **PAC-Bayes** has been successfully used to analyse and understand generalisation abilities of machine learning algorithms.

- Learning is to be able to generalise!
- **PAC-Bayes** has been successfully used to analyse and understand generalisation abilities of machine learning algorithms.
 - ▷ G., "A Primer on PAC-Bayesian Learning", invited for publication in the Proceedings of the French Mathematical Society, https://arxiv.org/abs/1901.05353
 - ♀ G. & Shawe-Taylor, "A Primer on PAC-Bayesian Learning", ICML 2019 tutorial https://bguedj.github.io/icml2019/index.html

- Learning is to be able to generalise!
- **PAC-Bayes** has been successfully used to analyse and understand generalisation abilities of machine learning algorithms.
 - ▷ G., "A Primer on PAC-Bayesian Learning", invited for publication in the Proceedings of the French Mathematical Society, https://arxiv.org/abs/1901.05353
 - ♀ G. & Shawe-Taylor, "A Primer on PAC-Bayesian Learning", ICML 2019 tutorial https://bguedj.github.io/icml2019/index.html
- Most PAC-Bayes generalisation bounds are computable tight upper bounds on the population error, *i.e.* an estimate of the error on any unseen future data.

- Learning is to be able to generalise!
- **PAC-Bayes** has been successfully used to analyse and understand generalisation abilities of machine learning algorithms.
 - ▷ G., "A Primer on PAC-Bayesian Learning", invited for publication in the Proceedings of the French Mathematical Society, https://arxiv.org/abs/1901.05353
 - ♀ G. & Shawe-Taylor, "A Primer on PAC-Bayesian Learning", ICML 2019 tutorial https://bguedj.github.io/icml2019/index.html
- Most PAC-Bayes generalisation bounds are computable tight upper bounds on the population error, *i.e.* an estimate of the error on any unseen future data.
- PAC-Bayes bounds hold for any distribution on hypotheses. As such, they are a principled way to invent new learning algorithms.

G. Letarte, P. Germain, B. G., F. Laviolette. *Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks*, to appear in NeurIPS 2019 https://arxiv.org/abs/1905.10259

G. Letarte, P. Germain, B. G., F. Laviolette. *Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks*, to appear in NeurIPS 2019 https://arxiv.org/abs/1905.10259

G. Letarte, P. Germain, B. G., F. Laviolette. *Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks*, to appear in NeurIPS 2019 https://arxiv.org/abs/1905.10259

We focused on DNN with a **binary activation function**: surprisingly effective while preserving low computing and memory footprints.

Very few meaningful generalisation bounds for DNN

G. Letarte, P. Germain, B. G., F. Laviolette. *Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks*, to appear in NeurIPS 2019 https://arxiv.org/abs/1905.10259

We focused on DNN with a **binary activation function**: surprisingly effective while preserving low computing and memory footprints.

Very few meaningful generalisation bounds for DNN Breakthrough: SOTA PAC-Bayes generalisation bound

G. Letarte, P. Germain, B. G., F. Laviolette. *Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks*, to appear in NeurIPS 2019 https://arxiv.org/abs/1905.10259

- Very few meaningful generalisation bounds for DNN Breakthrough: SOTA PAC-Bayes generalisation bound
- How to train a network with non-differentiable activation function?

G. Letarte, P. Germain, B. G., F. Laviolette. *Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks*, to appear in NeurIPS 2019 https://arxiv.org/abs/1905.10259

- Very few meaningful generalisation bounds for DNN Breakthrough: SOTA PAC-Bayes generalisation bound
- How to train a network with non-differentiable activation function? Breakthrough: training by minimising the bound (SGD + tricks)

G. Letarte, P. Germain, B. G., F. Laviolette. *Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks*, to appear in NeurIPS 2019 https://arxiv.org/abs/1905.10259

- Very few meaningful generalisation bounds for DNN Breakthrough: SOTA PAC-Bayes generalisation bound
- How to train a network with non-differentiable activation function?
 Breakthrough: training by minimising the bound (SGD + tricks)
- Who cares? Generalisation bounds are a theoretician's concern!

G. Letarte, P. Germain, B. G., F. Laviolette. *Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks*, to appear in NeurIPS 2019 https://arxiv.org/abs/1905.10259

- Very few meaningful generalisation bounds for DNN Breakthrough: SOTA PAC-Bayes generalisation bound
- How to train a network with non-differentiable activation function?
 Breakthrough: training by minimising the bound (SGD + tricks)
- Who cares? Generalisation bounds are a theoretician's concern!
 Breakthrough: Our bound is computable and serves as a safety check to practitioners

Binary Activated Neural Networks **a** $\mathbf{x} \in \mathbb{R}^{d_0}, y \in \{-1, 1\}$

Architecture:

- L fully connected layers
- *d_k* denotes the number of neurons of the *k*th layer
- sgn(a) = 1 if a > 0 and sgn(a) = −1 otherwise

Parameters:

■ $\mathbf{W}_k \in \mathbb{R}^{d_k \times d_{k-1}}$ denotes the weight matrices.

$$\bullet \theta = \operatorname{vec}\left(\{\mathbf{W}_k\}_{k=1}^L\right) \in \mathbb{R}^D$$

Prediction

 $f_{\theta}(\mathbf{x}) = \operatorname{sgn} (\mathbf{w}_L \operatorname{sgn} (\mathbf{W}_{L-1} \operatorname{sgn} (\ldots \operatorname{sgn} (\mathbf{W}_1 \mathbf{x}))))$,

Generalisation bound

Generalisation bound

For an arbitrary number of layers and neurons, with probability at least $1-\delta,$ for any $\theta\in\mathbb{R}^D$

$$R_{\text{out}}(F_{\theta}) \leq \inf_{C>0} \left\{ \frac{1}{1 - e^{-C}} \left(1 - \exp\left(-CR_{\text{in}}(F_{\theta}) - \frac{\frac{1}{2} ||\theta - \theta_0||^2 + \log \frac{2\sqrt{m}}{\delta}}{m} \right) \right) \right\},\$$

where

$$R_{\mathrm{in}}(F_{\theta}) = \mathop{\mathbf{E}}_{\theta' \sim Q_{\theta}} R_{\mathrm{in}}(f_{\theta'}) = \frac{1}{m} \sum_{i=1}^{m} \left[\frac{1}{2} - \frac{1}{2} y_i F_{\theta}(\mathbf{x}_i) \right].$$

(A selection of) numerical results

Model name	Cost function	Train split	Valid split	Model selection	Prior
MLP–tanh PBGNetℓ PBGNet	linear loss, L2 regularized linear loss, L2 regularized PAC-Bayes bound	80% 80% 100 %	20% 20% -	valid linear loss valid linear loss PAC-Bayes bound	random init random init
PBGNet _{pre} – pretrain – final	linear loss (20 epochs) PAC-Bayes bound	50% 50%	-	- PAC-Bayes bound	random init pretrain

Dataset	$\begin{array}{c} \underline{MLP-tanh}\\ E_{\mathcal{S}} & E_{\mathcal{T}} \end{array}$	$E_{\mathcal{S}}^{PBGNet_{\ell}}$	$\begin{array}{c} \underline{PBGNet}\\ E_{\mathcal{S}} & E_{\mathcal{T}} & Bound \end{array}$	$\frac{PBGNet_{pre}}{E_{\mathcal{S}}} \frac{E_{T}}{E_{\mathcal{T}}} Bound$
ads adult mnist17 mnist49 mnist56 mnistLH	0.0210.0370.1280.1490.0030.0040.0020.0130.0020.0090.0040.017	0.018 0.032 0.136 0.148 0.008 0.005 0.003 0.018 0.002 0.009 0.005 0.019	0.024 0.038 0.283 0.158 0.154 0.227 0.007 0.009 0.067 0.038 0.039 0.153 0.022 0.266 0.103 0.071 0.073 0.186	0.034 0.033 0.058 0.153 0.151 0.165 0.003 0.005 0.009 0.018 0.021 0.030 0.008 0.008 0.017 0.026 0.033 0.033

Thanks!

We have several PhD / postdoc / visiting researcher positions available in my group, based in London and affiliated with Inria and UCL.

Feel free to reach out! https://bguedj.github.io