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Problem: How to learn an optimal policy
without sacrificing much revenue?

(aka: how to perform exploration in a conservative way?)



Conservative Condition
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Theoretically optimal algorithms for

conservative exploration (CUCB) (wu etal.
2016, Kazerouni et al. 2017)

in multi-armed
and linear bandit (CUCB2)
conservative

condition




C U C B (previous algorithm) C U C BZ (our algorithm)

- Two phase algorithm - Computes set of safe arms

a. Computes optimistic arm - Plays the optimistic arm among safe arms
b. Checks a lower bound on the total revenue

=> impacts empirical performance! => same regret but better performance!
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- Cold start problem
- Linear features
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