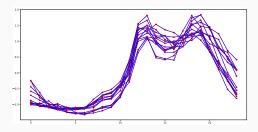


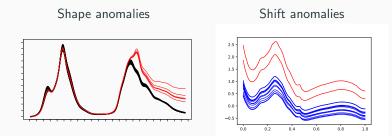
Functional Isolation Forest

Guillaume Staerman*

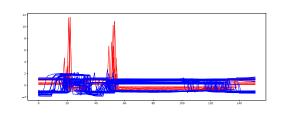
Joint work with


Pavlo Mozharovskyi*, Stéphan Clémençon* and Florence D'Alché-Buc*

MLITRW, October 02, 2019


*LTCI, Telecom Paris, Institut Polytechnique de Paris.

Functional Data Framework


- Let X = {X(t) ∈ ℝ^d, t ∈ [0,1]} be a random variable that takes its values in a (multivariate) functional space.
- In practice, we only have access to the realization of X at a finite number of arguments/times, x = {x(t₁),...,x(t_p)} such that 0 ≤ t₁ < ··· < t_p ≤ 1.
- The first step: reconstruct functional object from partial observations (time-series) with interpolation or basis decomposition.

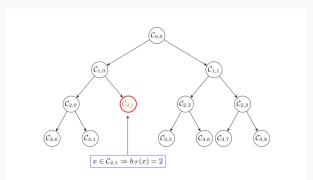
Anomaly detection and functional data

Isolated anomalies

Functional Isolation Forest

- This ensemble learning algorithm builds a collection of *functional isolation trees*.
- *Functional isolation tree* : binary tree based on a recursive and randomized tree-structured partitioning procedure.

- General principle:
 - 1. Select a function **d** into a dictionary \mathcal{D} .
 - 2. Compute the dot products $\langle\cdot,\cdot\rangle$ between d and the data.
 - 3. Draw randomly a treshold κ on the real line.
 - Split the space by a perpendicular hyperplan along d going through κ.
 - 5. Repeat this procedure until every data are isolated!!!
- The trick : an anomaly should be isolated faster than normal data.


Anomaly score prediction

 One may then define the piecewise constant function h_τ : X → N by: ∀x ∈ X,

 $h_{\tau}(x) = j$ if and only if $x \in \mathcal{C}_{j,k}$ and $\mathcal{C}_{j,k}$ is associated to a terminal node.

• Considering a collection of F-*i*tree T_1, \ldots, T_N , the scoring function is defined by

$$s_n(x) = 2^{-\frac{1}{Nc(n)}\sum_{l=1}^N h_{\tau_l}(x)},$$

Thank you !

All codes are available at https://github.com/Gstaerman/FIF