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Abstract

Uncovering and leveraging causal relations in complex systems are
landmark tasks for advancing machine learning towards artificial intelli-
gence. For the digital advertising application that includes an extremely
large number of variables with potentially changing relations over time
these problems reach new levels of challenge. We propose to research in
this internship one of two potential topics: i) evaluating and scaling up
existing causal discovery algorithms ii) learning to act for causal impact
by optimizing counter-factual losses.

1 Causal Discovery Topic

A recent trend in the Machine Learning community is to move beyond purely
statistical learning to solve general tasks [1]. If we consider for instance the
object recognition task a purely statistical model would optimize e.g. maximum
likelihood as a proxy. This line of work is limited in essence and beyond the
choice of a particular model by the reliance on correlations. A glaring failure of
such models is when objects are presented in an unusual context: a cow on a
beach is easily misclassified due to the absence of its usual environment (grass,
fences etc). On the other side a causal discovery approach would uncover the
causal relations between the presence of objects in an image [3] and learn that
the presence of grass is not causing the presence of cows. Conversely, presence
of a car can be learned to cause presence of tires but not vice-versa. Such
relationships would be immune to distribution shifts and should be preferred
for robust modeling. The advertising application is a particularly challenging
instance of this problem with potentially huge causal graphs constituted of user
interaction with products and ads over extended periods of time.

Approaches to causal discovery usually encompass two families of methods:
i) conditional independence tests ii) restricted model fitting [5]. In the first
instance one usually starts by estimating a skeleton for the causal graph us-
ing conditional independence tests, then uses different assumptions to orient
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the edges. A difficulty in this setting is to find a robust, non-parametric inde-
pendence test. Recently [4] introduced KDCD, a promising method that uses
an asymmetry assumption on the conditional distributions as measured in the
framework of reproducing kernel Hilbert spaces to orient edges. They report
new state of the art performance on the Tuebingen dataset of variable pairs.

Potential research questions for this topic:

• evaluate the 3 proposed KDCD variants (on more challenging datasets
and on multi-variate problems)

• potentially propose better edge orientation rules based on the same RKHS
norm as KDCD

• explore the use of KDCD on structured variables (e.g. time series of user
navigation / interactions)

• understand the interplay with other assumptions used to recover the causal
graph

• transpose the method to the discovery of confounders (could be very useful
for observational causal inference)

2 Counter-factual Loss Optimization Topic

The problem of learning to act so as to maximize causal impact can be stud-
ied as counterfactual optimization of continuous policies under logged bandit
feedback. The problem is to learn a policy performing continuous actions in
a high-dimensional context with access to data from past interactions. Such a
setting can be found in online systems such as causal advertising: an advertiser
is interested in optimizing the incremental effect of its ads with respect to an
organic situation and repeatedly needs to decide how much to bid in real-time
auctions. [2] proposes two formalizations of this task with different reward struc-
tures, along with the corresponding losses and optimization problems framed as
Counterfactual Risk Minimization [7].

The two proposed optimization problems involve optimizing an non-convex
importance sampling formula, either as a constrained (1) or as a variance pe-
nalized (2) optimization:
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where Y is the reward, C the cost necessary to obtain the reward and πθ
the parametric policy. Expected performance of a policy πθ is evaluated via
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importance sampling from logged data of previous policy π1:
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where ri are i.i.d. realizations of the r.v. R ∼ π1.
Baselines for these tasks consist in repeated, random initialization of either

SLSQP (1) or L-BFGS-B (2) algorithms. Upper/lower bounds for a similar
problem have been proposed in [6].

Potential research questions for this topic:

• evaluate upper/lower bound proposed in [6] on a private dataset (to be
released)

• evaluate the constrained approximation proposed in [6]

• study acceleration methods suitable for this problem

3 Practical Considerations

The intern will spend work time between Criteo office in Grenoble and INRIA
lab. The academic advisor would be Julien Mairal from Thoth team at Inria
Grenoble. The monthly pay rate by Criteo during the internship will be above
the minimum required by the university. It could start at the earliest in February
and end at the latest in September 2019.

No activities other than research would be expected from the student during
the internship. However the student will be involved in the Research group
meetings and have access to other researchers at Criteo. Criteo is open to
releasing relevant datasets for supporting this research and serving as future
benchmarks to the community. More information on the Criteo AI Lab team
can be found at http://ailab.criteo.com/.

Publication is encouraged and a major indicator of the success of the intern-
ship. Interns demonstrating seriousness in their research could be proposed to
be hired as junior scientist and pursue a CIFRE PhD.
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