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Reinforcement Learning
“Reinforcement learning is learning how to map 

situations to actions so as to maximize a 
numerical reward signal in an unknown and 

uncertain environment. 

The learner is not told which actions to take but 
she must discover which actions yield the most 
reward by trying them (trial-and-error). In the 
most interesting and challenging cases, actions 
affect not only the immediate reward but also 
the next situation and all subsequent rewards 

(delayed reward)”
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above human performance*

Recent RL Successes
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*improved even further over the years

defeated 
Lee Sedol

Given the generality of the RL framework, we can expect these algorithms could 
be applied to a wide range of applications (e.g., recommendation, education, 

human-robot interaction)
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samples =10 million frames, 
1 epoch = 50000 minibatch updates

4.9 million games

ATARI Game of GO

RL most successful algorithms are sample inefficient 
(both in collecting and using samples)

We need better understanding of how to effectively explore an 
unknown environment and learn an optimal policy.

Potential applications: robotics, personalized 
recommendation, human-computer interaction, …
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Exploration with
Optimism-in-face-of-uncertainty

Relevant literature:
- Burnetas A.N. and  M.N. Katehakis (1997). "Optimal Adaptive Policies for Markov Decision Processes", Mathematics of Operations Research, 

22 (1) pp 222-255.
- T.Jaksch, R.Ortner, and P.Auer: Near-optimal Regret Bounds for Reinforcement Learning, J.Mach.Learn.Res. 11, pp. 1563-1600 (2010).
- Peter L. Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs. In 

Proceedings of the 25th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2009).
- Ambuj Tewari and Peter Bartlett. Optimistic linear programming gives logarithmic regret for irreducible MDPs. In Advances in Neural 

Information Processing Systems 20 (NIPS 2007).
- Azar, Mohammad Gheshlaghi, Ian Osband and Rémi Munos. “Minimax Regret Bounds for Reinforcement Learning.” ICML (2017).
- S. Agrawal, R. Jia, "Optimistic posterior sampling for reinforcement learning: worst-case regret bounds". NIPS 2017.
- Kakade, Sham M., Mengdi Wang and Lin F. Yang. “Variance Reduction Methods for Sublinear Reinforcement Learning.” CoRR abs/1802.09184 

(2018).



Markov Decision Process

An MDP is a tuple

➢ State space 

➢ Action space

➢ Transition probability

➢ Reward function

Stationary Markov policy 

finite

agent

environment

critic



Average Reward (undiscounted infinite horizon)

infinite horizon

average reward

optimal reward optimal policy



True Environment

States

Actions

Rewards

Dynamics

Optimal 
policy



The Learning Problem

➢ Set initial state 

➢ While(true)

➢ Observe 

➢ Execute action

➢ Observe

agent

environment

critic

step

trajectory



True Environment

No initial knowledge



Noisy observations

True Environment



Estimation of the environment

trajectory

Estimated environment



Estimated environment

Both estimated rewards and dynamics may be inaccurate

True Environment



Plausible environments

Estimated environment Uncertainty

Plausible environments



Current estimate

Plausible environments

True Environment



Optimistic environment

optimal policy

optimistic environment

Optimism is used in a 
growing number of 
deep RL methods to 
improve exploration

“Unifying Count-Based Exploration and Intrinsic Motivation”, Bellemare et al. (2016)

“#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning”, Tang et al. (2017)

“The uncertainty Bellman equation and exploration”, Osband et al. (2018)



Current estimate

Plausible environments

Optimistic environment

True Environment



True Environment

Optimistic environment and policy



Noisy observations

True Environment



Noisy observations

True Environment



Estimated environment

Better estimation of the environment (effective exploration), while 
attempting to collect high reward (effective exploitation)

True Environment



Regret guarantees
optimal policy

(cumulative) regret
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Upper-Confidence for RL (UCRL)
Theorem (Jaksch et al., 2010)

For any n and any MDP with S states, A actions, and diameter D, with 

probability 1-delta, UCRL suffers a cumulative regret
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Diameter of an MDP

longest shortest path



Limitations of UCRL: (1) Diameter

longest shortest path Longer paths should not necessarily 
correspond to large regret



Limitations of UCRL: (2) Misspecified states

Optimism “favors” unknown states, 
but if they are unreachable, then it 

suffers unbounded regret. 

An MDP is a tuple

➢ State space 

➢ Action space

➢ Transition probability

➢ Reward function

Not necessarily 
all reachable

States

Very common in 
practice: we do not 
know in advance all 

reachable states



Bias-span constrained exploration
Relevant literature:
- T.Jaksch, R.Ortner, and P.Auer: Near-optimal Regret Bounds for Reinforcement Learning, 

J.Mach.Learn.Res. 11, pp. 1563-1600 (2010).
- Peter L. Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for reinforcement learning in 

weakly communicating MDPs. In Proceedings of the 25th Annual Conference on Uncertainty in Artificial 
Intelligence (UAI 2009).

- R. Fruit, M. Pirotta, R. Ortner, A. Lazaric “Efficient Bias-Span-Constrained Exploration-Exploitation in 
Reinforcement Learning”, ICML, 2018.



Bias function

difference between actual 
reward and asymptotic reward



Difference in “potential”

Average Reward (undiscounted infinite horizon)

(under the optimal policy)

Each step has reward -1 
and puddle has reward -

3



Assumption

Optimal Bias-span



Bias-span Constrained Optimism

only “reasonable” 
MDPs are considered

only “reasonable” policies 
without too big potentials are 

considered

Non-trivial 
optimization 

problem!



Solving an MPD
fixed MDP

Value iteration



Solving a constrained MPD
fixed MDP

(span-constrained) value iteration

In general:
- no convergence,

- even when 
convergent not 
associated to a 

policy



Bias-span Constrained Optimism

Plausible MDPs

include

allow non-zero transitions to an arbitrary 
state



Bias-span Constrained Optimism

(span-constrained) “extended” value iteration



Span-constrained Optimization
Theorem (Fruit, Pirotta, Ortner, L, 2018)

The span-constrained extended value iteration

➢ Converges

➢ Returns a span-constrained (stochastic) policy

➢ Solves the original constrained optimization problem up to an 

additive error 



Span-constrained Learning (SCAL)
Theorem (Fruit, Pirotta, Ortner, L, 2018)

For any n and any MDP with S states, A actions, and bias span upper-

bounded by c, with probability 1-delta, SCAL suffers a cumulative 

regret



A “complex” navigation problem



A “complex” navigation problem
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A “complex” navigation problem
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A “complex” navigation problem
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Learning with Misspecified
State Spaces

Relevant literature:
- T.Jaksch, R.Ortner, and P.Auer: Near-optimal Regret Bounds for Reinforcement Learning, 

J.Mach.Learn.Res. 11, pp. 1563-1600 (2010).
- Peter L. Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for reinforcement learning in 

weakly communicating MDPs. In Proceedings of the 25th Annual Conference on Uncertainty in Artificial 
Intelligence (UAI 2009).

- R. Fruit, M. Pirotta, A. Lazaric “Near Optimal Exploration-Exploitation in Non-Communicating Markov 
Decision Processes”, under review.



No assumption about whether all the 
states in     are actually reachable.

No assumption on the bias span. 

Misspecified State Space



Misspecified State Space



Misspecified State Space

Optimism
If    exists, then we can discover it and 

learn the optimal policy

If    does not 
exist, then we 
suffer linear 
regret (D=∞)



Misspecified State Space

“Greedy” approach 
If does not exists, then we learn the 

optimal policy on reachable states

If    does exist, 
then we suffer 
linear regret



Truncated Plausible MDPs

Estimated transition probability

Uncertainty

Largest plausible transition 
probability to

How do we 
tune the 

threshold?



Truncated Plausible MDPs

Truncated Plausible MDPs

set of states observed so far

decreasing threshold



Truncated UCRL (TUCRL)
Theorem (Fruit, Pirotta, L, 2018)

For any n and any MDP with S states, A actions, and diameter of the 

well-specified states Dcomm (the “true” diameter is ∞), with 

probability 1-delta, TUCRL suffers a cumulative regret



The Taxi Navigation Problem

➢ 500 states defined (all possible 
combinations of passenger, 
taxi, and destination positions)

➢ Only 400 states are actually 
reachable



The Taxi Navigation Problem [the higher the worse]
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Misspecified states

➢ UCRL: linear regret

➢ SCAL: Prior knowledge helps

➢ TUCRL: even without prior 
knowledge, it can still learn 
effectively



Conclusion



Conclusion
➢ Effective exploration is critical to apply RL in sample-expensive 
applications

➢ Optimistic exploration could be inefficient in “large” problems

➢ Prior knowledge on the range of the bias function helps avoiding 
“useless” exploration

➢ Misspecified states can be effectively managed

Integrate these findings into efficient deep RL approaches (e.g., 
model-based, policy gradient, value-based)



Thanks!

Questions?


