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Reinforcement Learning

“Reinforcement learning is learning how to map
situations to actions so as to maximize a
numerical reward signal in an unknown and

critic

environment uncertain environment.
(s,a,8",7)1 : : :
- (s,a,8 ) - The learner is not told which actions to take but
;e she must discover which actions yield the most
(s,a,s ,T)n reward by trying them (trial-and-error). In the
Learning Curve most interesting and challenging cases, actions

affect not only the immediate reward but also
the next situation and all subsequent rewards
(delayed reward)”
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Recent RL Successes
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above human performance*

Given the generality of the RL framework, we can expect these algorithms could
be applied to a wide range of applications (e.g., recommendation, education,
human-robot interaction)

*improved even further over the years
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Recent RL Successes
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RL most successful algorithms are sample inefficient
(both in collecting and using samples)

L
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We need better understanding of how to effectively explore an

unknown environment and learn an optimal policy.
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4.9 million games

Potential applications: robotics, personalized
recommendation, human-computer interaction, ...
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Outline

» Optimism-in-face-of-uncertainty principle
» Improving exploration with prior knowledge on the bias space
» Efficient exploration with misspecified states

» Conclusions



Exploration with
Optimism-in-face-of-uncertainty
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- Peter L. Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for reinforcement learning in weakly communicating MDPs. In
Proceedings of the 25th Annual Conference on Uncertainty in Artificial Intelligence (UAI 2009).

- Ambuj Tewari and Peter Bartlett. Optimistic linear programming gives logarithmic regret for irreducible MDPs. In Advances in Neural
Information Processing Systems 20 (NIPS 2007).

- Azar, Mohammad Gheshlaghi, lan Osband and Rémi Munos. “Minimax Regret Bounds for Reinforcement Learning.” ICML (2017).

- S. Agrawal, R. Jia, "Optimistic posterior sampling for reinforcement learning: worst-case regret bounds". NIPS 2017.

- Kakade, Sham M., Mengdi Wang and Lin F. Yang. “Variance Reduction Methods for Sublinear Reinforcement Learning.” CoRR abs/1802.09184
(2018).



Markov Decision Process

An MDP is a tupleM = (S, A, p,r)

» State space S —s St
finite

> Action space A—

> Transition probability p(s’|s, a)

> Reward functionr(s, a)

Stationary Markov policym : S — A(A)

- critc

.

environment

4




Average Reward (undiscounted infinite horizon)

g(M,m) = lim {',_l g Tt_ e = (st mlst))
n _
t=1

n—00 St+1 NP('\StJ(St))

L average reward

infinite horizon

g° =maxg(M, ) " = argmax g(M, )

T

optimal reward optimal policy



True Environment

Dynamics'
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The Learning Problem

» Set initial statesg
» While(true)
» Observe S; o oiic

environment

» Execute action ay \ )

» Observe S¢41,T¢
i Step <St7at75t—|—1art>

trajectory (s1, a1, 82,71, S92, a2, )



True Environment

No initial knowledge



True Environment

Noisy observations



Estimation of the environment

trajectory (s1,a1,S2,71,82,02, )

\ 4

Estimated environment

N

Mt — <57~’47 ?taﬁt>

~ ﬁt(sa CL)

. Ni(s,a,s")
/ y M9
pe(s']s,a) =

2\)t(8) t( ‘ ) .2~t(S,CL)

ri(s,a) =



True Environment

Estimated environment

Both estimated rewards and dynamics may be inaccurate



Plausible environments

Estimated environment Uncertainty
M = (S, A, T, pt) r(s,a) —ri(s,a)| < Bry(s,a)
A Ri(s,a) Ni(s,a,8") ||~ "
(s, a) = jiffj;;) Di(s]s,a) = ]t\;;;ja‘;) p(-|s,a) —pi(-|s,a)||, < Bpi(s,a)

\ 4

Plausible environments

M ={M = (S, A,7,p)}



True Environment

Plausible environments \



Optimistic environment

(%t,]\z arg max max g(mw, M)

MEMt 7T

Optimism is used in a
growing number of
deep RL methods to

improve exploration optimistic environment

optimal policy

“Unifying Count-Based Exploration and Intrinsic Motivation”, Bellemare et al. (2016)
“#Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning”, Tang et al. (2017)
“The uncertainty Bellman equation and exploration”, Osband et al. (2018)



True Environment

Plausible environments \



True Environment

ciy—»

Optimistic environment and policy



True Environment

Noisy observations



True Environment

Noisy observations



True Environment

Estimated environment

Better estimation of the environment (effective exploration), while
attempting to collect high reward (effective exploitation)



Regret guarantees

(cumulative) regret

optimal policy
i learning curve

average reward

I >

samples
T
Sk
R, = ng" — E T
t=1



Upper-Confidence for RL (UCRL)

Theorem (Jaksch et al., 2010)
For any n and any MDP with S states, A actions, and diameter D, with

probability 1-delta, UCRL suffers a cumulative regret

R, = O(DSV An)
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Diameter of an MDP

longest shortest path



Limitations of UCRL: (1) Diameter

D — {ﬂ’/t T 7 / }
mae {_min, {E°[7(s.)]} | L
)
7 \
\)N/ )/
longest shortest path Longer paths should not necessarily

correspond to large regret



Limitations of UCRL: (2) Misspecified states

An MDP is a tupleM = (S, A, p, )

» State space S —s

Not necessarily
all reachable

> Action space A

States

-

» Transit |
Very common In

ractice: we do not .
> Rew Enow - dvance al Optimism “favors” unknown states,

reachable states but if they are unreachable, then it
suffers unbounded regret.




Bias-span constrained exploration

Relevant literature:

- T.Jaksch, R.Ortner, and P.Auer: Near-optimal Regret Bounds for Reinforcement Learning,
J.Mach.Learn.Res. 11, pp. 1563-1600 (2010).

- Peter L. Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for reinforcement learning in
weakly communicating MDPs. In Proceedings of the 25th Annual Conference on Uncertainty in Artificial
Intelligence (UAI 2009).

- R. Fruit, M. Pirotta, R. Ortner, A. Lazaric “Efficient Bias-Span-Constrained Exploration-Exploitation in
Reinforcement Learning”, ICML, 2018.



Bias function

S

h™(s) = lim E :Zrt —g" (s)

n— 0O
t=1

difference between actual
reward and asymptotic reward




Average Reward (undiscounted infinite horizon)

Each step has reward -1
and puddle has reward -

III

Difference in “potentia

hﬂ-* (S) — hﬂ-* (S,) (under the optimal policy)



Optimal Bias-span

Assumption

T o 8 _ T <
Igleagch (s) Igélgh (s) =sp(h™ ) <c



Bias-span Constrained Optimism

e, M) = M
(T, M) = arg max max g(m, M)

s.t. sp(h(m,M)) <c

Non-trivial only “reasonable”
optimization MDPs are considered

problem!

only “reasonable” policies
without too big potentials are
considered



Solving an MPD

fixed MDP
(M) = argmax g(m, M§—|_

T

Value iteration
Vo (S) =0

VUna1(8) = max (r(s, a) + 2:]0(3’|57 a)fun(sl))

Tna1(S) = arg max (r(s, a) + ZP(S/|S, a)UnH(S/))

a



Solving a constrained MPD

fixed MDP
m (M) = arg max g(, M}—r
In general:

- NO convergence, S.T. Sp(h(ﬁ, M)) <c

- even when
convergent not

et e 5 span-constrained) value iteration
policy

vo(s) =0

Un+1/2(8) = max (7"(3, a) + ZP(S/\S, a)vn(s’))

Un+t1 = trunce(vp,41/2)



Bias-span Constrained Optimism

(%t,]\Z) = arg max max g(mw, M)

Plausible MDPs
M;={M = (S, A,7,p)}

r(s,a) — (s, a)

p(-|s,a) — pe(-[s, a)

MEMt 7T

sp(h(m, M)) < c

S B?",t (37 CL)

Y include 7(s,a) =0

1 < Bpat(87 CL)

allow non-zero transitions to an arbitrary

p(5|s, &p® n



Bias-span Constrained Optimism

(%t,]\Z) = arg max max g(mw, M)
MeMb

s.t. sp(h(m, M)) <c

(span-constrained) “extended” value iteration
UQ(S) =0

U,n_|_]_/2(3) — max ( max r(s,a) + max Zﬁ(s’\s, a)vn(s’)>
a /FGBj:,t peBT "

Un+1 = trunc, (Un—l—l/Q)



Span-constrained Optimization

Theorem (Fruit, Pirotta, Ortner, L, 2018)

The span-constrained extended value iteration

» Converges

» Returns a span-constrained (stochastic) policy

» Solves the original constrained optimization problem up to an

additive error 1C



Span-constrained Learning (SCAL)

Theorem (Fruit, Pirotta, Ortner, L, 2018)
For any n and any MDP with S states, A actions, and bias span upper-
bounded by ¢, with probability 1-delta, SCAL suffers a cumulative

regret

R, = O(cSVAn)



A “complex” navigation problem

]

Shop \
DS

S =360,A =38

D = 250, sp(h*) ~ 3.28




A “complex” navigation problem
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A “complex” navigation problem
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A “complex” navigation problem
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Learning with Misspecified
State Spaces

Relevant literature:

- T.Jaksch, R.Ortner, and P.Auer: Near-optimal Regret Bounds for Reinforcement Learning,
J.Mach.Learn.Res. 11, pp. 1563-1600 (2010).

- Peter L. Bartlett and Ambuj Tewari. REGAL: A regularization based algorithm for reinforcement learning in
weakly communicating MDPs. In Proceedings of the 25th Annual Conference on Uncertainty in Artificial
Intelligence (UAI 2009).

- R. Fruit, M. Pirotta, A. Lazaric “Near Optimal Exploration-Exploitation in Non-Communicating Markov
Decision Processes”, under review.



Misspecified State Space

No assumption about whether all the
states in Sare actually reachable.

No assumption on the bias span.



Misspecified State Space

(2

NCF



Misspecified State Space

~ If 5 does not
exist, then we
suffer linear
regret (D=oo)

Optimism
If sexists, then we can discover it and
learn the optimal policy



Misspecified State Space

It - does exist,
’\ then we suffer
linear regret

“Greedy” approach
If sdoes not exists, then we learn the
optimal policy on reachable states




Truncated Plausible MDPs

Estimated transition probability

pe(s'[s, a) / XG

Uncertainty

I

’ﬁ(8'|8» a) —pi(s'ls,a)| < Bpi(s,a,s) How do we
tune the

Largest pIaUS|I?!e transition e ek
probability to s

pi(Sls,a) + By i(s,a,35) < pr = pe(S|s,a) =0



Truncated Plausible MDPs

(%t,]\/\f/t) = arg max max g(m, M)
MeM] ™

Truncated Plausible MDPs
S; set of states observed so far

p: =~ 1/1/t decreasing threshold

Vs € §°,5¢ S°, if p(s|s,a) + By i(s,a,s) < pr = p(s|s,a) =0



Truncated UCRL (TUCRL)

Theorem (Fruit, Pirotta, L, 2018)
For any n and any MDP with § states, A actions, and diameter of the

well-specified states D (the “true” diameter is o), with

comm

probability 1-delta, TUCRL suffers a cumulative regret

Ry = O(DeommSV An)




The Taxi Navigation Problem

R

G

500 states defined (all possible
combinations of passenger,
taxi, and destination positions)

Only 400 states are actually
reachable



The Taxi Navigation Problem (tne higher the worse]

107 Misspecified states
-== SCAL c= 200

— 4| — TUCRL UCRL: linear regret
Z — UCRL
8 SCAL: Prior knowledge helps
)
- TUCRL: even without prior

N bl

. knowledge, it can still learn
0 1 2 3 10 |
Duration T effectively



Conclusion



Conclusion

» Effective exploration is critical to apply RL in sample-expensive
applications

» Optimistic exploration could be inefficient in “large” problems

» Prior knowledge on the range of the bias function helps avoiding
“useless” exploration

» Misspecified states can be effectively managed

$

Integrate these findings into efficient deep RL approaches (e.q.,
model-based, policy gradient, value-based)
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